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Introduction

Differential Entropy and the MESP

N := {1, 2, . . . , n}.
Random YN := (Y1,Y2, . . . ,Yn)

T with continuous density gN .

Goal: Given 0 < s < n, choose S ⊂ N , with |S| = s, so that observing YS

maximizes the “information” obtained about YN , where “information” is
differential entropy h(S) := −E[ln gS(YS)], see Shannon 1948.

Some calculations:

▶ If ZS := AYS + b, where A ∈ R|S|×|S| is invertible, and b ∈ R|S|, then
h(ZS) = h(YS) + ln |detA|.
=⇒ differences of entropies are meaningful.

▶ If YS has a non-degenerate joint Gaussian distribution with covariance
matrix C[S, S], then

h(YS) =
1

2
ln det (2πeC[S, S]) =

1

2

(
(1+log(2π))|S|+ln detC[S, S]

)
.
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Introduction

The Constrained Maximum-Entropy Sampling Problem

z(C, s,A, b) := max
{
ln detC[S, S] : |S| = s;∑

j∈S aij ≤ bi, i = 1, 2, . . . ,m
}

= max
{
ln detC[S(x), S(x)] : eTx = s,

Ax ≤ b, x ∈ {0, 1}n
}
,

(CMESP)

▶ The term “MESP” comes from the experimental-design literature
(Shewry and Wynn 1987). It has been developed in that literature,
and more broadly in statistics (Sebastiani and Wynn 2000).

▶ As a finite discrete problem, statisticians employed simple interchange
heuristics, which actually do quite well on instances of modest size.
The mathematical-optimization community began to get involved
starting with Ko, Lee, and Queyranne 1995.

J. Lee MESP MIP 2022 2 / 36



Introduction Application

An application: environmental monitoring I

see Caselton, Kan, and Zidek 1992; Wu and Zidek 1992; Guttorp, Le,
Sampson, and Zidek 1993; Brown, Le, and Zidek 1994; Wang, Le, and
Zidek 2020; Zidek, Sun, and Le 2000; Lee 2012; Le and Zidek
2006+EnviroStat; Al-Thani and Lee 2020+MESgenCov.

Setting: We have univariate time-series Yj(t) at spatially dispersed
locations (“monitoring sites”) j ∈ N , for discrete time points
t = 1, 2, . . . , T . The network-contraction problem is to choose a subset
S ⊂ N , with |S| = s (given), with the idea that future observations will
only be collected at S. From the data, we can calculate a sample
covariance matrix C, and then we formulate an instance of MESP.

Data: The NADP (National Acidic Deposition Program) maintains the
NTN (National Trends Network); see NADP 2018). The NTN measures
the chemistry of precipitation at 379 monitoring sites, with some (weekly)
data available as far back as 1978; at present, 255 sites are active.
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Introduction Application

An application: environmental monitoring II

Data: Power plants burning fossil fuels produces a large fraction of the
(SO2) emissions in the US. Emissions of nitrogen oxides (NOx) come from
transportation, power plants, and other industrial sources. SO2 ultimately
leads to sulfuric acid (H2SO4). Similarly, nitrogen oxides lead to nitric acid
(HNO3). Presence of these acids in significant amounts decreases the pH
of precipitation to ≤ 4.0, and this is considered “acid rain”, which has
adverse impacts on terrestrial and aquatic creatures and on infrastructure.

Toward monitoring for acid rain, the NTN analyzes samples for: hydrogen
ion (H+ measured as pH), sulfate (SO2−

4 ), and nitrate (NO−
3 ). Additional

analysis is carried out for ammonium (NH+
4 ), chloride (Cl−), calcium

(Ca2+), magnesium (Mg2+), potassium (K+), ortho-phosphate (PO3−
4 ).

and sodium (Na+).
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Introduction Application

An application: environmental monitoring III

Figure: Aerochem Metrics Precipitation Collector
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Introduction Application

An application: environmental monitoring IV

Figure: The “acid rain” process
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Introduction Application

An application: environmental monitoring V
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National Atmospheric Deposition Program/National Trends Network
http://nadp.isws.illinois.edu

Lab pH

Hydrogen ion concentration as pH from measurments 
made at the Central Analytical Laboratory, 1987

≥ 5.7

≤ 4.1

4.9

4.5

5.3

Figure: NTN “acid rain” data: 1987
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Introduction Application

An application: environmental monitoring VI
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Sites not pictured:
Alberta 32
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Hydrogen ion concentration as pH from measurements
made at the Central Analytical Laboratory, 2018
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Figure: NTN “acid rain” data: 2018
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Introduction Application

An application: environmental monitoring VII

Figure: Log sulfate concentration over a four-year period at a site
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Algorithms

Some preliminary facts

▶ MESP is NP-hard; reduction from: Does a graph G contain a stable
set (of vertices) of cardinality s. Just take C := A(G) + nIn (see Ko,
Lee, and Queyranne 1995).

▶ Special case: If C (or C−1) is tridiagonal, then solvable by dynamic
programming, see Al-Thani and Lee 2021.

▶ ln detC[S, S] is a (generally non-monotone) submodular function
(∼= the “Hadamard-Fischer inequalities”).

▶ Bounds and bounds:

z(C, s,A, b) = z(γC, s,A, b)− s ln γ, leading to the equivalent “scaled
problem”.
z(C, s,A, b) = z(C−1, n− s,−A, b−Ae) + ln detC, leading to the
equivalent “complementary problem”.
z(C, s,A, b) ≤ z(M ◦ C, s,A, b), for any correlation matrix M (from
Oppenheim’s inequality), leading to the related “masked problem”.
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Algorithms

Algorithmic approaches

▶ A variety of greedy and local-search heuristics for MESP, integer-linear
programming heuristics for CMESP, aiming at good lower bounds for
large instances (see Ko, Lee, and Queyranne 1995; Lee 1998).

▶ Approximation algorithms for MESP (and for very restricted
CMESP), modulo scaling, mainly based on the big and still-growing
literature on submodular maximization, which started with
Nemhauser, Wolsey, and Fisher 1978.

▶ Exact algorithms, mostly based on a “branch-and-bound” framework,
aimed at solution of moderate-sized instances.

▶ Among all continuous random vectors YS with covariance matrix
C[S, S], the ones with maximum entropy are Gaussian (from Gibb’s
inequality).
=⇒ Upper bounds on Gaussian entropy are upper bounds on entropy.
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Algorithms Branch-and-Bound

Branch-and-Bound

▶ We maintain a list L of subproblems of the form L(F0, F1) where
F1 ⊂ S ⊂ N \ F0, and a lower bound LB on z(C, s,A, b).

▶ Notice that the optimal value of L(F0, F1) is just
ln detC[F1, F1] + z(CF1 [N \ F0 \ F1, N \ F0 \ F1], s− |F1|).

▶ Initially, the list L contains only the given CMESP, and LB could be
the value of any heuristic solution.

▶ For a subproblem L(F0, F1), we consider the continuous relaxation of
its feasible region:{

x ∈ Rn : eTx = s, Ax ≤ b, 0 ≤ x ≤ e,

xj = 0 for j ∈ F0, xj = 1 for j ∈ F1

}
.

▶ Key invariant properties to maintain for branch-and-bound
Every subproblem on L is feasible, but the continuous relaxation of the
corresponding subproblem does not have a unique feasible solution.
If there is a feasible solution S of CMESP with ln detC[S, S] > LB
then S is a feasible solution for some subproblem on L.

▶ Then we can stop when L = ∅, and we will have LB = z(C, s,A, b).
J. Lee MESP MIP 2022 12 / 36



Algorithms Branch-and-Bound

How we process the list L

▶ An iteration of the algorithm chooses and removes some subproblem
L(F0, F1) ∈ L.

▶ Next, we apply some upper bounding method to the chosen
subproblem L(F0, F1).

▶ If the calculated upper bound for the subproblem L(F0, F1) is less
than or equal to LB, we simply discard L(F0, F1), and the key
invariant properties are maintained.

▶ If this is not the case, we choose a branching index j ∈ N \ F1 \ F0.
From this, we define:

the in child as L(F1 + j, F0), and
the out child as L(F1, F0 + j).

▶ It is easy to see that every feasible solution of L(F0, F1) is feasible for
either its in child or its out child.
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Algorithms Branch-and-Bound

How we treat our children

▶ If |F1 + j| = s, then F1 + j is the unique set S satisfying
F1 + j ⊂ S ⊂ N \ F0, |S| = s; so in this case, we discard the in-child,
and if

∑
k∈F1+j A[·, k] ≤ b, then we update

LB := max{LB, ln detC[F1 + j, F1 + j]}.
▶ If |F0 + j| = n− s, then N \ (F0 + j) is the unique set S satisfying

F1 ⊂ S ⊂ N \ (F0 + j), |S| = s; so in this case, we discard the
out-child, and if

∑
k∈N\(F0+j)A[·, k] ≤ b, then we update

LB := max{LB, ln detC[N \ (F0 + j), N \ (F0 + j)]}.
▶ If a child cannot be discarded based on one of the these rules above,

we go further. We consider the feasible region of the continuous
relaxation of the CMESP associated with a child. With a single
linear-optimization problem, we can determine a maximal set of linear
equations satisfied by all points of the continuous relaxation (see
Freund, Roundy, and Todd 1985). If this is a single point x̂, then we
discard the child, and if x̂ is binary, then we update
LB := max{LB, ln detC[S(x̂), S(x̂)]}.
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Algorithms Spectral upper bounds

Spectral upper bounds

For MESP, we have the spectral bound:

Proposition (see Ko, Lee, and Queyranne 1995)

z(C, s) ≤
s∑

ℓ=1

lnλℓ(C),

and with the mask M = In, we have

Proposition (see Hoffman, Lee, and Williams 2001)

z(C, s) ≤
s∑

ℓ=1

ln diag(C)[ℓ],
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Algorithms Spectral upper bounds

Spectral upper bounds, continued

▶ Extension to CMESP via Lagrangian relaxation: Lee 1998.
▶ Much more on masking the spectral bound

locally optimizing the mask: Anstreicher and Lee 2004.
same but with a Cholesky-factor variable for the mask: Burer and Lee
2007.
combinatorial masks: Hoffman, Lee, and Williams 2001.
combinatorial masks, matching, and integer-linear optimization: Lee
and Williams 2003.
tridiagonal masks: Al-Thani and Lee 2021.
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Algorithms Convex-programming upper relaxations/bounds

Convex-programming relaxations: general advantages

▶ Easy passage from MESP to CMESP (i.e., no conceptual difficulty in
including our constraints Ax ≤ b).

▶ Variable fixing methodology for “convex MINLP” (based on duality)
can be directly and effectively applied in cases where the constraints
0 ≤ x ≤ e are explicit:

Theorem

Let
▶ LB be the objective-function value of a feasible solution for CMESP,

▶ (·, υ̂, ν̂) be a feasible solution for the dual of our convex relaxation
with objective-function value ζ̂.

Then, for every optimal solution x∗ for CMESP, we have:

x∗k = 0, ∀ k ∈ N such that ζ̂ − LB < υ̂k ,

x∗k = 1, ∀ k ∈ N such that ζ̂ − LB < ν̂k .
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Algorithms Convex-programming upper relaxations/bounds

A warm-up for the “NLP bound”

Let x(S) be the characteristic vector of S. We have

Diag(x(S))C Diag(x(S)) + Diag(e− x(S)) =

(
C[S, S] 0

0 I

)
.

Leading to the following formulation of CMESP:

max
{
ln det (Diag(x)C Diag(x) + Diag(e− x)) :

eTx = s, Ax ≤ b, x ∈ {0, 1}n
}
,

but the objective function is not concave on x ∈ [0, 1]n.

J. Lee MESP MIP 2022 18 / 36



Algorithms Convex-programming upper relaxations/bounds

NLP bound: Anstreicher, Fampa, Lee, and Williams 1999

The first convex-programming upper bound for CMESP.

zNLP(C, s,A, b) := max
{
ln detR(x) : eTx = s, Ax ≤ b, 0 ≤ x ≤ e

}
,

where

R(x) := Diag(xp/2)C Diag(xp/2) + Diag(dxi
i − dix

pi
i : i ∈ N).

Properties (see Chen, Fampa, and Lee 2021b):

▶ With appropriate choices of parameters, the NLP bound is a convex
program, smooth, and efficiently solvable with custom (and probably
general-purpose) nonlinear-programming software (e.g., Knitro).

▶ Complementing and scaling can be effectively employed; see
Anstreicher, Fampa, Lee, and Williams 1999

J. Lee MESP MIP 2022 19 / 36



Algorithms Convex-programming upper relaxations/bounds

linx bound: Anstreicher 2020

A bound of the form log det(linear in x).

zlinx(C, s,A, b) := max
{
1
2 ln detL(x) : eTx = s; Ax ≤ b; 0 ≤ x ≤ e

}
,

where L(x) := C Diag(x)C +Diag(e− x).

Nice properties:

▶ Convex, smooth, and efficiently solvable with nonlinear-programming
software (e.g., Knitro and SDPT3); see Chen, Fampa, and Lee 2021b.

▶ Self-complementary, like the spectral bound; see Anstreicher 2020.

▶ Bound is very sensitive to scaling, but finding the optimal scale factor
can be cast as a univariate convex minimization problem; see Chen,
Fampa, Lambert, and Lee 2021a.
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Algorithms Convex-programming upper relaxations/bounds

Justifying the linx bound

Let x(S) be the characteristic vector of S, and let T := N \ S. We have

C Diag(x(S))C +Diag(e− x(S)) =

(
C[S, S]2 C[S, S][S, T ]

C[S, T ]TC[S, S] C[S, T ]TC[S, T ] + I

)
.

If C[S, S] is singular, then we can see that L(x(S)) is singular. So we
have that f(x(S)) = ln detC[S, S] = −∞ in this case.

If C[S, S] is nonsingular. Employing the Schur complement determinant
formula and taking logarithms, we have

ln det(C Diag(x(S))C +Diag(e− x(S)))
= 2 ln detC[S, S]+

ln det(C[S, T ]TC[S, T ] + I − C[S, T ]TC[S, S]C[S, S]−2C[S, S]C[S, T ])
= 2 ln detC[S, S].
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Algorithms Convex-programming upper relaxations/bounds

Masking the linx bound: Chen, Fampa, and Lee 2022

We have the scaled and masked linx bound

linx(C, s;M,γ) := max{f(C, s;M,γ;x) : eTx = s, 0 ≤ x ≤ e},

where f(C, s;M,γ;x) :=

1
2

(
ln det

(
γ(C ◦M)Diag(x)(C ◦M) + Diag(e− x)

)
− s log γ

)
.

Theorem (Masking can help linx a lot, even under optimal scaling)

There is an infinite sequence of positive-semidefinite matrices
{Cn}n∈4Z++ , such that

min
γ>0

linx
(
Cn,

n
2 ; J, γ

)
−min

γ̄>0
linx

(
Cn,

n
2 ; I, γ̄

)
≥ bn

for some positive scalar b ≥ 0.024036.
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Algorithms Convex-programming upper relaxations/bounds

Factorization bound: Nikolov 2015

Also see: Li and Xie 2020; Chen, Fampa, and Lee 2021b.

zFact(C, s,A, b;F ) :=max
{∑s

ℓ=1 log
(
λℓ(F

TDiag(x)F )
)

:

eTx = s, Ax ≤ b, 0 ≤ x ≤ e
}
,

where C = FFT.

This is not a convex program, but its Lagrangian dual is:

zDFact(C, s,A, b;F ) :=

min −
∑k

ℓ=k−s+1 log (λℓ (Θ)) + νTe+ πTb+ τs− s
subject to:
diag(FΘFT) + υ − ν −ATπ − τe = 0,
Θ ≻ 0, υ ≥ 0, ν ≥ 0, π ≥ 0.

(DFact)

J. Lee MESP MIP 2022 23 / 36



Algorithms Convex-programming upper relaxations/bounds

Factorization bound, continued

And taking a further Lagrangian dual, we can get to the even more
tractable:

zDDFact(C, s,A, b;F ) :=max {Γs(F (x)) :

eTx = s, Ax ≤ b, 0 ≤ x ≤ e
}
. (DDFact)

Nice properties (see Chen, Fampa, and Lee 2021b):

▶ Convex, reasonably smooth, and efficiently solvable with
nonlinear-programming software (e.g., Knitro).

▶ Factorization bound is independent of the factorization C = FFT.

▶ Factorization bound is invariant under scaling.

▶ Factorization bound provably dominates the spectral bound.

▶ Complementation technique is useful for the factorization bound.

But what is Γs?
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Algorithms Convex-programming upper relaxations/bounds

Factorization bound, continued

Lemma (Nikolov 2015)

Let λ ∈ Rk
+ with λ1 ≥ λ2 ≥ . . . ≥ λk and let 0 < s ≤ k. There exists a

unique integer ι, with 0 ≤ ι < s, such that

λι >
1

s−ι

∑k
ℓ=ι+1 λℓ ≥ λι+1,

with the convention λ0 = +∞.

With the hypotheses of the lemma, let ι be the unique integer above. We
define

ϕs(λ) :=
∑ι

ℓ=1 log (λℓ) + (s− ι) log
(

1
s−ι

∑k
ℓ=ι+1 λℓ

)
.

Next, for X ∈ Sk+, we define Γs(X) := ϕs(λ(X)).
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Algorithms Convex-programming upper relaxations/bounds

BQP bound: Anstreicher 2018; Helmberg 1995 (unpub.)

The idea now is to lift x ∈ Rn to a matrix variable X ∈ Sn, relaxing the
nonconvex constraint X = xxT.

zBQP(C, s,A, b) := max {ln detM(x,X) : (x,X) ∈ Rn × Sn,
Ax ≤ b, eTx = s,

X − xxT ⪰ 0, diag(X) = x, Xe = sx } ,

where M(x,X) := C ◦X +Diag(e− x).

Nice properties:
▶ Convex, smooth, and efficiently solvable with nonlinear-programming

software (e.g., SDPT3); see Anstreicher 2018.
▶ Bound is sensitive to scaling, but finding the optimal scale factor can

be cast as a univariate convex-minimization problem (see Chen,
Fampa, Lambert, and Lee 2021a).

▶ We can do variable fixing, even though the constraints 0 ≤ x ≤ e are
implicit from X − xxT ⪰ 0 and x = diag(X); see Anstreicher 2018.
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Algorithms Convex-programming upper relaxations/bounds

Mixing bounds: Chen, Fampa, Lambert, and Lee 2021a

▶ We consider m ≥ 1 convex relaxations for CMESP, indexed by
i = 1, . . . ,m:

vi := max
{
fi(Li(x)) : eTx = s, Ax ≤ b, 0 ≤ x ≤ e

}
,

where, for i = 1, . . . ,m, ki ≤ n, Li : Rn → Ski+ are affine functions,

and fi : Ski+ → R are concave functions. We write
Li(x) := Li0 + Li1x1 + · · ·+ Linxn and Lij ∈ Ski , for i = 1, . . . ,m
and j = 0, . . . , n. We note that the objective functions of DDFact,
comp-DDFact, and linx can be written as fi(Li(x)).

▶ For a “weight vector” α ∈ Rm
+ , such that eTα = 1, we define the

mixing bound (see Chen et al. 2021a for a more general setting):

v(α) := max
{∑m

i=1 αifi(Li(x)) : eTx = s, Ax ≤ b, 0 ≤ x ≤ e
}
.

▶ The goal is to minimize the mixing bound over α (and any
parameters for the individual bounds).
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Algorithms Convex-programming upper relaxations/bounds

Mixing bounds, continued

▶ We have convexity in the weight vector α.

▶ We have an algorithmic framework to minimize over α, and we can
indeed get improvements on unmixed bounds, whenever unmixed
bounds are close to one another.

▶ We have a methodology to fix variables using duality; this is where we
exploit the form fi(Li(x)).

▶ We have ways to improve on the mixing of the BQP bound and the
comp-BQP bound, via cuts.
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The end

Finally

Where are the computational results?

In the papers! (see references at the end of this slide deck)

Where can I read more? In our book:

Maximum-Entropy Sampling:
Algorithms and application

Marcia Fampa and Jon Lee

Forthcoming in 2022 (Springer, ORFE Series)
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The end

Thanks!

Questions?
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