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Generalized Disjunctive Programming (GDP)
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Raman and Grossmann (1994)   (Extension Balas, 1979)

Objective Function

Common Constraints

Continuous Variables

Boolean Variables

Logic Propositions

OR operator

Disjunction

Fixed Charges

Constraints

a) Provides a “high level” modeling representation
b) Can be used to derive MI(N)LP models (algebraic constraints)

Goal: introduce extension to Nested GDP



1. Raman R. and Grossmann I.E., “Modelling and Computational Techniques for Logic-Based Integer Programming”, Computers and Chemical Engineering, 18, 563, 
1994.

GDP is a higher level of representation for MILP/MINLP
Optimization problem with algebraic expressions, disjunctions & logic propositions

General form of GDP1
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Objective Function

Global Constraints

Disjunctions

Logic Propositions

min 𝑧 = 𝑓 𝑥

s.t. 𝑔 𝑥 ≤ 0

⋁ ! ∈ #!
𝑌$!

𝑟$! 𝑥 ≤ 0 𝑘 ∈ 𝐾

⊻ ! ∈ #! 𝑌$! 𝑘 ∈ 𝐾

𝛺 𝑌 = 𝑇𝑟𝑢𝑒

𝑥 ∈ ℝ%

𝑌$! ∈ 𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐷$

Convex

Convex GDP

ConvexConvex

Illustration – Process network

R1

R2
S2

F1

F3

F2

F4

F6

F7

F5

S1

max 𝑧 = 𝑃!𝐹! − 𝑃"𝐹" − 𝑐# − 𝑐$ Objective function
𝐹" = 𝐹% + 𝐹&
𝐹! = 𝐹' + 𝐹(

Global Constraints

𝑌#" ⇔ 𝑌$_*+ Logic

𝑌#"
𝐹( = 𝛽#"𝐹%
𝐹& = 𝐹, = 0
𝑐# = 𝛾-"

⋁

𝑌#%
𝐹( = 𝐹% = 0
𝐹, = 𝛽#%𝐹&
𝑐# = 𝛾-%

𝑌$"
𝐹' = 𝛽$"𝐹,
𝑐$ = 𝛾.%

⋁
𝑌$%

𝐹' = 𝛽$%𝐹,
𝑐$ = 𝛾.%

⋁
𝑌$_*+
𝐹' = 0
𝑐$ = 0

Disjunctions

𝑌#" ⊻ 𝑌#%
𝑌$" ⊻ 𝑌$% ⊻ 𝑌$_*+
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Logic based methods

Branch and bound
(Lee & Grossmann, 2000)

(Bernal & Grossmann, 2020)

Decomposition
Outer-Approximation
Generalized Benders

(Turkay & Grossmann, 1997)
(Chen and Grossmann, 2019)

Methods Generalized Disjunctive Programming

Hull 
relaxation

Big-M

Reformulation MINLP

GDP

Branch and Bound
Outer-Approximation
Generalized Benders

Extended Cutting Plane
MILP for linear functions
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Big-M MINLP (BM) 

• MINLP reformulation of GDP

         min   ( )

              . .       ( ) 0 
    ( ) (1 )  , ,

                1,  
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Big-M Parameter

Logic constraints
Williams (1990)

NLP Relaxation 0 1jkl£ £ =>  Lower bound to optimum of GDP
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Hull Relaxation Problem (HRP)

w Property: The NLP (HRP) yields a lower bound to optimum of (GDP).
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Convex Hull
each disjunction

HRP:

MINLP reformulation:  set 1,0=jkl

Perspective function

Disaggregated variables

Logic constraints

(Lee, Grossmann, 2000)

Hull relaxation: intersection of convex hull of each disjunction



BM(                  )
BM(                  )

HR(                  )
HR(                  )

(HR) provides a tighter relaxation than (BM)
Illustration of (BM) and (HR) relaxations

(BM)

7

Variables: 6 (4 binary)
Constraints: 18

Variables: 14 (4 binary)
Constraints: 36

𝑨𝟏

x2

x1

F:
𝑨𝟏 ⊻ [𝑨𝟐]
𝑩𝟏 ⊻ [𝑩𝟐]

𝑨𝟐

𝑩𝟏

𝑩𝟐

(HR)

x2

x1

𝑨𝟏

𝑨𝟐

𝑩𝟏

𝑩𝟐

F:
𝑨𝟏 ⊻ [𝑨𝟐]
𝑩𝟏 ⊻ [𝑩𝟐]

(HR) is the intersection of the 
convex hull of each disjunction

Tradeoff: (BM) has a smaller problem size while
(HR) has a tighter continuous relaxation
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Strength Lower Bounds
w Theorem: The relaxation of (HRP) yields a lower bound that is greater than or

equal to the lower bound that is obtained from the relaxation of problem (BM
Grossmann, Lee (2003)

Big-M relaxationConvex hull relaxation

Convex Hull of a set of disjunctions is smallest convex set that includes set of  disjunctions. 
Projected relaxation of (CH) onto the space of  (BM) is as tight or tighter than that of (BM)
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min 									𝑍 = 𝑓(𝑥) 

𝑠. 𝑡. 𝑟(𝑥) ≤ 0  

 1

⎣
⎢
⎢
⎢
⎡

𝑌𝑖𝑗
𝑔𝑖𝑗 (𝑥) ≤ 0

1 9
𝑊𝑖𝑗𝑘𝑙

ℎ𝑖𝑗𝑘 𝑙(𝑥) ≤ 0	>
𝑙∈𝐿𝑖𝑗 𝑘

	∀𝑘 ∈ 𝐾𝑖𝑗
⎦
⎥
⎥
⎥
⎤

𝑗∈𝐽𝑖

 ∀𝑖 ∈ 𝐼 

 Ω(𝑌,𝑊) = 𝑇𝑟𝑢𝑒  

 𝑥𝑙𝑜 ≤ 𝑥 ≤ 𝑥𝑢𝑝   

 𝑥 ∈ ℝ𝑛   

 𝑌𝑖𝑗 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖  

 
𝑊𝑖𝑗𝑘𝑙 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} 

 
∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖  

∀𝑘 ∈ 𝐾𝑖𝑗 , 𝑙 ∈ 𝐿𝑖𝑗𝑘  

 

Nested GDP (NGDP): Hierarchical Logic

For problems with a 
hierarchical structure, there 
are lower-level decisions (W) 
that are subject to upper-level 
decisions (Y).

Examples:
• Process design (upper-level) 

and process operation 
(lower-level)

• Long-term planning (upper-
level) and short-term 
scheduling (lower-level)
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NGDP Formulations
Traditional GDP does not consider nested 
disjunctions and requires transforming model
into an Equivalent Single-level GDP (Approach 1):

min 									𝑍 = 𝑓(𝑥) 

𝑠. 𝑡. 𝑟(𝑥) ≤ 0 

 1

⎣
⎢
⎢
⎢
⎡

𝑌𝑖𝑗
𝑔𝑖𝑗 (𝑥) ≤ 0

1 9
𝑊𝑖𝑗𝑘𝑙

ℎ𝑖𝑗𝑘𝑙 (𝑥) ≤ 0	>
𝑙∈𝐿𝑖𝑗𝑘

	∀𝑘 ∈ 𝐾𝑖𝑗
⎦
⎥
⎥
⎥
⎤

𝑗∈𝐽𝑖

 

∀𝑖 ∈ 𝐼 

 
1𝑌𝑖𝑗
𝑗∈𝐽𝑖

 

∀𝑖 ∈ 𝐼 

 
1 𝑊𝑖𝑗𝑘𝑙
𝑙∈𝐿𝑖𝑗𝑘

⇔ 𝑌𝑖𝑗  

∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖  
 Ω(𝑌,𝑊) = 𝑇𝑟𝑢𝑒 

 𝑥𝑙𝑜 ≤ 𝑥 ≤ 𝑥𝑢𝑝  

 𝑥 ∈ ℝ𝑛  

 
𝑌𝑖𝑗 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} 

∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖  

 
𝑊𝑖𝑗𝑘𝑙 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}							∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖  

∀𝑘 ∈ 𝐾𝑖𝑗 , 𝑙 ∈ 𝐿𝑖𝑗𝑘  

 

min 									𝑍 = 𝑓(𝑥) 

𝑠. 𝑡. 𝑟(𝑥) ≤ 0 
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𝑌𝑖𝑗
𝑔𝑖𝑗 (𝑥) ≤ 07

𝑗∈𝐽𝑖

 

∀𝑖 ∈ 𝐼 

 
1 2

𝑊𝑖𝑗𝑘𝑙

ℎ𝑖𝑗𝑘𝑙 (𝑥) ≤ 0	7
𝑙∈𝐿𝑖𝑗𝑘

1A
𝑊𝑖𝑗𝑘0

𝑥𝑙𝑜 ≤ 𝑥 ≤ 𝑥𝑢𝑝
E 

∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾𝑖𝑗  

 
1𝑌𝑖𝑗
𝑗∈𝐽𝑖

 

∀𝑖 ∈ 𝐼 

 
1 𝑊𝑖𝑗𝑘𝑙
𝑙∈𝐿𝑖𝑗𝑘

1𝑊𝑖𝑗𝑘0 

∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾𝑖𝑗  

 
1 𝑊𝑖𝑗𝑘𝑙
𝑙∈𝐿𝑖𝑗𝑘

⇔ 𝑌𝑖𝑗  

∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖  
 Ω(𝑌,𝑊) = 𝑇𝑟𝑢𝑒 

 𝑥𝑙𝑜 ≤ 𝑥 ≤ 𝑥𝑢𝑝  

 𝑥 ∈ ℝ𝑛  

 
𝑌𝑖𝑗 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} 

∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖  

 
𝑊𝑖𝑗𝑘𝑙 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}												∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖  

∀𝑘 ∈ 𝐾𝑖𝑗 , 𝑙 ∈ 𝐿𝑖𝑗𝑘 ∪ {0} 
 

The proposed approach is to 
explicitly model GDPs with the nested 
disjunctions (Approach 2):

Extract nested 
disjunction (requires 
creating a new 
Boolean variable Wijk0)
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NGDP Reformulation Approach 1
(Equivalent Single-level GDP Reformulation)

Extract Inner 
Disjunction

Big-M Reformulation (BM1)

Hull Reformulation (HR1)

additional slack

additional disjunct

The additional disjunct will incur the creation of a 
new binary variable (𝛚j0). A new disaggregated 

variable (𝞵j0) is also created in the hull 
reformulation
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NGDP Reformulation Approach 2 
(Direct NGDP Reformulation)

Big-M of Inner Disjunction

Hull of 
Inner Disjunction

Big-M Reformulation (BM2)

Hull Reformulation 
(HR2)

2 big-M parameters:
- m: inner disjunction
- M:outer disjunction

Inner disjunction 
variables are 

disaggregated only once
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Big-M Reformulation Tightness
Theorem 1. The continuous relaxation of the Direct NGDP Big-M Reformulation 
(Approach 2 Big-M Reformulation; r-BM2) is as tight as the continuous relaxation of 
the Equivalent Single-level GDP Reformulation (Approach 1 Big-M Reformulation; 
r-BM1) when the tightest big-M values are used:

r-BM2 ⊆ r-BM1
Proof: The two approaches differ in the Big-M reformulation of the constraints in the 
inner disjunct:

Approach 1: ℎ!" 𝑥 ≤ 𝑚!" 1 − 𝜔!" ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾!
Approach 2: ℎ!" 𝑥 ≤ 𝑚!"# ⋅ 1 − 𝜔!" +𝑀!# 1 − 𝜆! ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾!

Let ℎ!"$%& = max ℎ!" 𝑥 |𝑥 ∈ 𝑅', 𝑥() ≤ 𝑥 ≤ 𝑥*+ be the maximum value of the 
constraint ℎ!" 𝑥 in the feasible space of 𝑥. The tightest Big-M values satisfy:

Approach 1: 𝑚!" = ℎ!"$%&

Approach 2: 𝑚!"# +𝑀!# = ℎ!"$%&

Since 𝜆! ≥ 𝜔!", the right-hand side of the Big-M constraint in Approach 2 can be 
shown to be as tight as the right-hand side of the Big-M constraint in Approach 1:

𝑚!"# ⋅ 1 − 𝜔!" +𝑀!# 1 − 𝜆! ≤ 𝑚!" 1 − 𝜔!"
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Hull Reformulation Tightness
Theorem 2. The continuous relaxation of the Direct NGDP Hull Reformulation 
(Approach 2 Hull Reformulation; r-HR2) is as tight as the continuous relaxation of 
the Equivalent Single-level GDP Reformulation (Approach 1 Hull Reformulation; 
r-HR1):

r-HR2 ⊆ r-HR1
Proof: Use Fourier-Motzkin to eliminate the additional disaggregated variable (µj0) 
and its associated binary (ωj0) resulting from the additional disjunct (Wj0) created 
when extracting the inner disjunct in Approach 1. Note the following,
• Wj0 is selected iff the main disjunct is not (Yj): 𝜔!, = 1 − 𝑦!.
• µj0 is bounded by 0 ≤ 𝜇!, ≤ 𝑥*+𝜔!,.
The elimination yields the constraint,

𝜈! + ?
!!∈.:!!0!

𝜈!! − 𝑥*+ 1 − 𝑦! ≤ ?
"∈1"

𝜇!" ≤ 𝜈! + ?
!!∈.:!!0!

𝜈!!

which can be shown to be a relaxation of the analogous constraint in Approach 2,

𝜈! ≤ ?
"∈1"

𝜇!" ≤ 𝜈!

Note: 0 ≤ ∑!!∈.:!!0! 𝜈!! ≤ 𝑥*+(1 − 𝑦!)
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Reformulation Tightness Example

• Big-M = Big-M 
reformulation for Approach 1 
or Approach 2

• Tight-M-1 = Big-M 
reformulation for Approach 1 
with tightest M values

• Tight-M-2 = Big-M 
reformulation for Approach 2 
with tightest M values

• Hull-1 = Hull reformulation 
for Approach 1

• Hull-2 = Hull reformulation 
for Approach 2
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!
𝑌𝑖

$
𝑊𝑖,1

𝐼𝐶𝑖 = 𝛼𝑖,1 + 𝛽𝑖,1𝑄𝑖
/ ∨ $

𝑊𝑖,2
𝐼𝐶𝑖 = 𝛼𝑖,2 + 𝛽𝑖,2𝑄𝑖

/2 ∨ 3
¬𝑌𝑖
𝑄𝑖 = 0
𝐼𝐶𝑖 = 0

6		∀𝑖 ∈ 𝐼 

Nested GDP Example: 
Design & Process Scheduling

Iyer and Grossmann (1998)

Sales        Purchases        Installation & Operating Costs

max 							𝑍 ='(𝑝𝐶𝐹8,𝑡 − 0𝑝𝐵𝐹3,𝑡 + 𝑝𝐴𝐹0,𝑡67
𝑡∈𝑇

−' 𝐼𝐶𝑟
𝑟∈ℛ

−'𝐼𝐶𝑖
𝑖∈𝐼

−''𝑂𝐶𝑖,𝑡
𝑖∈𝐼𝑡∈𝑇

 

Tank levels

Reactor availability

Logic Propositions
Select technology for installation

Select operating technology

Match operating & installed technology

Process selection (Y), technology selection (W)

𝑠. 𝑡. 𝑅𝐴,𝑡 = 𝑅𝐴,𝑡−1 + 𝐹0,𝑡 − 𝐹1,𝑡 			∀𝑡 ∈ 𝑇 
𝑅𝐵,𝑡 = 𝑅𝐵,𝑡−1 + 𝐹2,𝑡 + 𝐹3,𝑡 − 𝐹4,𝑡 + 𝐹5,𝑡 			∀𝑡 ∈ 𝑇 
𝑅𝐶,𝑡 = 𝑅𝐶,𝑡−1 + 𝐹6,𝑡 + 𝐹7,𝑡 − 𝐹8,𝑡 			∀𝑡 ∈ 𝑇 
 

 

𝑅𝑈,𝑡 = 𝑅𝑈,𝑡−1 −;Δ𝑅𝑖,𝑡
𝑖∈𝐼

+;Δ𝑅𝑖,𝑡−𝜏𝑖
𝑖∈𝐼

		∀𝑡 ∈ 𝑇 

 

 
𝐹0,𝑡 ≤ 𝐹𝐴𝑚𝑎𝑥 			∀𝑡 ∈ 𝑇 
𝐹3,𝑡 ≤ 𝐹𝐵𝑚𝑎𝑥 			∀𝑡 ∈ 𝑇 
𝐹8,𝑡 ≤ 𝐹𝐶𝑚𝑎𝑥 			∀𝑡 ∈ 𝑇 
𝑅𝑟,𝑡 ≤ 𝑄𝑟								∀𝑟 ∈ ℛ, 𝑡 ∈ 𝑇 

 
 

! 𝑋𝑟
𝐼𝐶𝑟 = 𝛼𝑟 + 𝛽𝑟𝑄𝑟

+ ∨ -
¬𝑋𝑟

𝐼𝐶𝑟 = 0
𝑄𝑟 = 0

0			∀𝑟 ∈ ℛ 

𝑌𝑖 ⇔ 𝑊𝑖,1 ∨ 𝑊𝑖,2		∀𝑖 ∈ 𝐼 

𝑁𝑖,𝑡 ⇒ 𝑊𝑖,1 ∨𝑊𝑖,2			∀𝑖 ∈ 𝐼 

¬𝑌𝑖 ⇒ ¬𝑁𝑖,𝑡 			∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 

Tank installation (X)

Schedule production (N)
𝑁𝑖,𝑡 ⇔ 𝑊𝑖,𝑡,1 ∨𝑊𝑖,𝑡,2			∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 

𝑊𝑖,𝑡,𝑚 ⇒ 𝑊𝑖,𝑚 			∀𝑖 ∈ 𝐼,𝑚 ∈ 𝑀𝑖  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑁𝑖,𝑡
𝐵𝑖,𝑡 ≤ 𝑄𝑖
Δ𝑅𝑖,𝑡 = 1
𝐹𝑖𝑛 ,𝑡 = 𝐵𝑖,𝑡

1
𝑊𝑖,𝑡,1

𝐹𝑜𝑢𝑡 ,𝑡+𝜏𝑖 = 𝜈𝑖,1𝐵𝑖,𝑡
𝑂𝐶𝑖,𝑡 = 𝛾𝑖,1𝐵𝑖,𝑡

; ∨ 1
𝑊𝑖,𝑡,2

𝐹𝑜𝑢𝑡 ,𝑡+𝜏𝑖 = 𝜈𝑖,2𝐵𝑖,𝑡
𝑂𝐶𝑖,𝑡 = 𝛾𝑖,2𝐵𝑖,𝑡

;
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

∨

⎣
⎢
⎢
⎢
⎢
⎢
⎡

¬𝑁𝑖,𝑡
𝐵𝑖,𝑡 = 0
Δ𝑅𝑖,𝑡 = 0
𝐹𝑖𝑛 ,𝑡 = 0

𝐹𝑜𝑢𝑡 ,𝑡+𝜏𝑖 = 0
𝑂𝐶𝑖,𝑡 = 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

			∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 
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Nested GDP Example Results: 
Design & Process Scheduling

Big-M 
Reformulation 
(Approach 1)

Big-M 
Reformulation  
(Approach 2)

Hull 
Reformulation 
(Approach 1)

Hull 
Reformulation 
(Approach 2)

Model 
Size

171 binaries
236 continuous

1,338 constraints

138 binaries
232 continuous

1,235 constraints

171 binaries
770 continuous

3,161 constraints

138 binaries
796 continuous

3,199 constraints

Relaxation
Gap 94.2% 89.5% 5% 4%

Relaxation 
Simplex 
Iterations

179 211 195 154

Nodes 
Explored 562 2,326 0 0

Solution
Time 0.68 s 1.14 s 0.22 s 0.49 s

Implementation: JuMP 1.0
Disjunctive Programming: 0.3

Solver: CPLEX 20.1 (default options)
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Optimization model for power generation and 
transmission expansion planning

Goal: Long term Planning to Minimize Total Cost

Generation: Lara, C. L., Mallapragada, D. S., Papageorgiou, D. J., Venkatesh, A., & Grossmann, I. E. (2018). Deterministic electric power infrastructure planning: Mixed-
integer programming model and nested decomposition algorithm. European Journal of Operational Research, 271, 1037-1054.

Generation and Transmission: Li, C., A.J. Conejo, P. Liu, B.P. Omell, J.D. Siirola, I.E. Grossmann. (2021) Mixed-integer Linear Programming Models and Algorithms for 
Generation and Transmission Expansion Planning of Power Systems. European Journal of Operational Research, 297, 1071-1082.

Method: Large-scale multiperiod MILP model (Benders decomposition)

Determine: Number and type of generators / transmission lines, Unit commitments, Total cost

Given: Generation sources, load demand for each region, CO2 emission limits and economic data

Coal power plants Natural gas power plants Nuclear power plants Wind turbines Solar panels

Limitation: 
Reliability (i.e., generators or transmission lines failures) are not explicitly considered
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Problem statement
Goal

Develop a Generalized Disjunctive Programming model for multi-period and multi-site capacity 
planning of reliable power generation systems

Characteristics of the model
• Dual role of backup generators depending on power demand
• Advanced probabilistic model for reliability evaluation considering redundancy

Given
• Regions, power stations, backup generators
• Economic data (investment & operating cost)
• Unit reliability and electricity demand
• CO2 emission and carbon tax

Determine
• When and where to install and retire the 

generators? 
• Number and size of backup generators
• System reliability & expected power 

production

Seolhee Cho
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Overview of GDP optimization model
Summary of constraints

• Balance of power plant k that are available, decommissioned, and extend lifetime

• Balance and capacity of newly installed and available backup generator j in time t

• Available backup generators j in year t can either operate or remain as backup during sub-period n of 
year t

• Total feedstock, total expected power output, CO2 emission, and symmetry breaking constraints

• LOLE and LOEE penalties calculation

• Failure state probability, and corresponding expected power output under specific design h and 
operation mode m

à These are calculated based on embedded disjunctions
à Two Boolean variables: Zk,r,h,t – Planning decision, Wk,r,m,h,t,n – Operation decision 
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Nested Disjunction in GDP formulation

Design decisions in time t
Operation decisions during subperiod n in time t

Successful reliability 

Expected production level depending 
on design and operation
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Illustrative example

22

NG/Nuclear/Biomass Three capacities for backup generators small/medium/large
Unit reliability (%) 90 / 95 / 95 Capacity size of backup generator (kW) 100 / 200 / 300
Installed capacity of power plant (kW) 200 / 300 / 200 Installation cost of NG by size (k$/kW) 5 / 8 / 10
Operating cost ($/kW) 20 / 40 / 15 Installation cost of nuclear by size (k$) 15 / 20 / 25
Conversion efficiency (%) 40 / 45 / 40 Installation cost of biomass by size (k$) 2.5 / 4.5 / 6
Feedstock cost ($/MMBtu) 0.3 / 0.01 / 0.2 Average CO2 emission cost ($/kg) 3

Operating cost of power plant ($/kW) 20 / 40 / 15

LOEE (unmet demand) penalty rate ($/kWh) 10 LOEE (downtime) penalty rate ($/hour) 5,000

El
ec

tri
ci

ty
 d

em
an

d 
(k

W
)

0
200
400
600
800

1000
1200

Region 1 Region 2

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

• Two regions (R1, R2) and three different power technologies are installed (natural gas, nuclear, and biomass gasification)
• By adding backup generators, each power plant can both expand its capacity and improve reliability

Region 2Region 1

Natural gas

Nuclear Biomass

Nuclear
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N1 N4N2 N3

Approach 2 Constraints Cont. Variables Binary variables CPU (sec) Rel gap% LP relaxation (k$) Cost (k$)

Big-M 12,419 4,631 1,644 1,668.31 84.0 115.7 722.21

Hull reformulation 23,503 12,435 1,644 10.84 11.8 636.9 722.21

Computational results

• Solver: Gurobi 32.1.0
• Tight bounds of convex hull reformation à Short computational time 

Discrete capacity (kW) 100 200 300 Operating generator

Backup generator

• Backup generator are used to produce more power (Region 2/2nd demand period)
• Reliable design and operation strategies are highly dependent by LOLE and LOEE penalties

Operation result: 4 demand periods, year 5

Illustrative example: 
2 regions: Natural gas/Nuclear, Nuclear/Biomass over 5 year

Region 2Region 1

Natural gas Nuclear Nuclear Biomass

Region 2Region 1

Natural gas Nuclear Nuclear Biomass

Region 2Region 1

Natural gas Nuclear Nuclear Biomass

Region 2Region 1

Natural gas Nuclear Nuclear Biomass
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Conclusions

• Extending GDP to allow nested disjunctions allows explicitly 
modeling problems with multiple hierarchies

• Two approaches to reformulate NGDPs into MI(N)LPs have 
been formalized:
w Approach 1: transforming into an equivalent single-level 

GDP and then reformulating
w Approach 2: reformulating NGDP from the inside-out

• Relaxations of reformulated models via Approach 2 are shown 
to be as tight or tighter than their counterparts obtained via 
Approach 1

• Examples show superiority Approach 2
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min 			𝑍 = 𝑓(𝑥) 

𝑠. 𝑡. 𝑟(𝑥) ≤ 0 

 

 

1

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑌𝑖1𝑗1

(1)

𝑔𝑖1𝑗1
(1) (𝑥) ≤ 0

1

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑌𝑖1𝑗1,𝑖2𝑗2

(2)

𝑔𝑖1𝑗1,𝑖2𝑗2
(2) (𝑥) ≤ 0	

⎣
⎢
⎢
⎡

⋮

1 =
𝑌𝑖1𝑗1,…,𝑖𝑁 𝑗𝑁
(𝑁)

𝑔𝑖1𝑗1,…,𝑖𝑁 𝑗𝑁
(𝑁) (𝑥) ≤ 0

@
𝑗𝑛∈𝐽𝑖1𝑗1,…,𝑖𝑁−1𝑗𝑁−1,𝑖𝑁

(𝑁)

			∀𝑖𝑁 ∈ 𝐼𝑖1𝑗1,…,𝑖𝑁−1𝑗𝑁−1
(𝑁)

⎦
⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑗2∈𝐽𝑖1𝑗1,𝑖2
(2)

	∀𝑖2 ∈ 𝐼𝑖1𝑗1
(2)

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

	∀𝑖1 ∈ 𝐼(1)	
𝑗1∈𝐽𝑖1

(1)

 

 

 Ω(𝑌) = 𝑇𝑟𝑢𝑒 

 𝑥𝑙𝑜 ≤ 𝑥 ≤ 𝑥𝑢𝑝  

 𝑥 ∈ ℝ𝑛  

 𝑌𝑖1𝑗𝑗 ,…,𝑖𝑘 𝑗𝑘
(𝑛) ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}			∀𝑛 ∈ {1,… ,𝑁} 

 

Remarks
NGDPs and their reformulations to MI(N)LPs can be extended to 
multi-level hierarchies:

Level 1

Level 2

Level N


