

Extending Generalized Disjunctive Programming to Model Hierarchical Systems

Hector D. Perez and Ignacio E .Grossmann

Center for Advanced Process Decision-making Department of Chemical Engineering Carnegie Mellon University Pittsburgh, PA 15213, U.S.A

Mixed Integer Programming Workshop 2022 DIMACS, Rutgers University May 23-26, 2022

Congratulations Dan!

Carnegie Mellon Generalized Disjunctive Programming (GDP) Raman and Grossmann (1994) *(Extension Balas, 1979)* $\min Z = \sum_{k} c_{k} + f(x)$ **Objective Function** s.t. $r(x) \leq 0$ **Common Constraints** OR operator $\longrightarrow \bigvee_{j \in J_k} \begin{vmatrix} Y_{jk} \\ g_{jk}(x) \le 0 \\ c_k = \gamma_{jk} \end{vmatrix}$, $k \in K$ Disjunction **Constraints Fixed Charges** $\Omega(Y) = true$ **Logic Propositions** $x \in \mathbb{R}^n, \mathbb{C}_{k} \in \mathbb{R}^1$ **Continuous Variables** $Y_{\mu} \in \{ true, false \}$ **Boolean Variables**

a) Provides a *"high level"* modeling representationb) Can be used to derive MI(N)LP models *(algebraic constraints)*

Goal: introduce extension to Nested GDP

GDP is a higher level of representation for MILP/MINLP

Optimization problem with algebraic expressions, disjunctions & logic propositions

3

Illustration – Process network

F6

S2

Objective function Global Constraints

F7

F5

 $\begin{bmatrix} Y_{R1} \\ F_6 = \beta_{R1}F_2 \\ F_3 = F_4 = 0 \\ c_R = \gamma_{r1} \end{bmatrix} \lor \begin{bmatrix} Y_{R2} \\ F_6 = F_2 = 0 \\ F_4 = \beta_{R2}F_3 \\ c_R = \gamma_{r2} \end{bmatrix}$ $\begin{bmatrix} Y_{S1} \\ F_5 = \beta_{S1}F_4 \\ c_S = \gamma_{S2} \end{bmatrix} \vee \begin{bmatrix} Y_{S2} \\ F_5 = \beta_{S2}F_4 \\ c_S = \gamma_{S2} \end{bmatrix} \vee \begin{bmatrix} Y_{S_NO} \\ F_5 = 0 \\ c_S = 0 \end{bmatrix}$

Disjunctions

Logic

1. Raman R. and Grossmann I.E., "Modelling and Computational Techniques for Logic-Based Integer Programming", Computers and Chemical Engineering, 18, 563, 1994.

Methods Generalized Disjunctive Programming

Big-M MINLP (BM)

• MINLP reformulation of GDP

$$\min Z = \sum_{k \in K} \sum_{j \in J_k} \gamma_{jk} \lambda_{jk} + f(x)$$

s.t. $r(x) \le 0$
 $g_{jk}(x) \le M_{jk}(1 - \lambda_{jk}) , j \in J_k, k \in K$
 $\sum_{j \in J_k} \lambda_{jk} = 1, k \in K$
 $A\lambda \le a$
 $x \ge 0, \lambda_{jk} \in \{0, 1\}$
Big-M Parameter
Big-M Parameter
 $Logic constraints$
 $Williams (1990)$

NLP Relaxation $0 \le \lambda_{jk} \le 1 \implies$ Lower bound to optimum of GDP

Hull Relaxation Problem (HRP)

6

(Lee, Grossmann, 2000)

HRP:

$$\min Z = \sum_{k \in K} \sum_{j \in J_{k}} \gamma_{jk} \lambda_{jk} + f(x)$$

$$s.t. \quad r(x) \leq 0$$

$$x = \sum_{j \in J_{k}} v^{jk}, k \in K$$

$$0 \leq v^{jk} \leq \lambda_{jk} U_{jk}, j \in J_{k}, k \in K$$

$$0 \leq v^{jk} \leq \lambda_{jk} U_{jk}, j \in J_{k}, k \in K$$

$$\sum_{j \in J_{k}} \lambda_{jk} = 1, k \in K$$
Perspective function
$$\Rightarrow \lambda_{jk} g_{jk} (v^{jk} / \lambda_{jk}) \leq 0, \quad j \in J_{k}, k \in K$$

$$A\lambda \leq a$$

$$Logic constraints$$

$$x, v^{jk} \geq 0, \quad 0 \leq \lambda_{jk} \leq 1, \quad j \in J_{k}, k \in K$$

<u>Property</u>: The NLP (HRP) yields a <u>lower bound</u> to optimum of (GDP).

MINLP reformulation: set $\lambda_{ik} = 0,1$

Carnegie Mellon

Carnegie Mellon

Hull relaxation: intersection of convex hull of each disjunction

(HR) provides a tighter relaxation than (BM)

Illustration of (BM) and (HR) relaxations

(HR) has a tighter continuous relaxation

Strength Lower Bounds

• <u>Theorem</u>: *The relaxation of (HRP) yields a <u>lower bound that is greater than or</u> <u>equal to the lower bound</u> that is obtained from the relaxation of problem (BM Grossmann, Lee (2003)*

Convex Hull of a set of disjunctions is smallest convex set that includes set of disjunctions. Projected relaxation of (CH) onto the space of (BM) is as tight or tighter than that of (BM)

Carnegie Mellon Nested GDP (NGDP): Hierarchical Logic

- min Z = f(x)
- s.t. $r(x) \leq 0$

$$V_{ij} = Y_{ij}$$

$$g_{ij}(x) \leq 0$$

$$\Omega(Y =) = True$$

$$x^{lo} \leq x \leq x^{up}$$

$$x \in \mathbb{R}^{n}$$

$$Y_{ij} \in \{True, False\}$$

For problems with a
hierarchical structure, there
are lower-level decisions (W)
that are subject to upper-level
decisions (Y).

Examples:

 $\forall i \in I, j \in J_i$

- Process design (upper-level) and process operation (lower-level)
- Long-term planning (upperlevel) and short-term scheduling (lower-level)

NGDP Formulations

Traditional GDP does not consider nested disjunctions and requires transforming model into an Equivalent Single-level GDP (*Approach 1*):

The proposed approach is to explicitly model GDPs with the nested disjunctions (*Approach 2*):

Carnegie Mellon NGDP Reformulation Approach 1 (Equivalent Single-level GDP Reformulation)

Carnegie Mellon Big-M Reformulation Tightness

Theorem 1. The continuous relaxation of the **Direct NGDP Big-M Reformulation** (Approach 2 Big-M Reformulation; *r-BM2*) is as tight as the continuous relaxation of the **Equivalent Single-level GDP Reformulation** (Approach 1 Big-M Reformulation; *r-BM1*) when the tightest big-M values are used:

r-BM2 \subseteq r-BM1

Proof: The two approaches differ in the Big-M reformulation of the constraints in the inner disjunct:

Approach 1: $h_{jk}(x) \le m_{jk}(1 - \omega_{jk}) \quad \forall j \in J, k \in K_j$ Approach 2: $h_{jk}(x) \le m'_{jk} \cdot (1 - \omega_{jk}) + M'_j(1 - \lambda_j) \quad \forall j \in J, k \in K_j$ Let $h_{jk}^{max} = \max\{h_{jk}(x) | x \in \mathbb{R}^n, x^{lo} \le x \le x^{up}\}$ be the maximum value of the constraint $h_{jk}(x)$ in the feasible space of x. The tightest Big-M values satisfy:

Approach 1:
$$m_{jk} = h_{jk}^{max}$$

Approach 2: $m'_{jk} + M'_j = h_{jk}^{max}$

Since $\lambda_j \ge \omega_{jk}$, the right-hand side of the Big-M constraint in Approach 2 can be shown to be as tight as the right-hand side of the Big-M constraint in Approach 1: $m'_{jk} \cdot (1 - \omega_{jk}) + M'_j (1 - \lambda_j) \le m_{jk} (1 - \omega_{jk})$

Carnegie Mellon Hull Reformulation Tightness

Theorem 2. The continuous relaxation of the **Direct NGDP Hull Reformulation** (Approach 2 Hull Reformulation; *r-HR2*) is as tight as the continuous relaxation of the **Equivalent Single-level GDP Reformulation** (Approach 1 Hull Reformulation; *r-HR1*):

r- $HR2 \subseteq r$ -HR1

Proof: Use Fourier-Motzkin to eliminate the additional disaggregated variable (μ_{j0}) and its associated binary (ω_{j0}) resulting from the additional disjunct (W_{j0}) created when extracting the inner disjunct in Approach 1. Note the following,

- W_{j0} is selected iff the main disjunct is not (Y_j) : $\omega_{j0} = 1 y_j$.
- μ_{j0} is bounded by $0 \le \mu_{j0} \le x^{up} \omega_{j0}$.

The elimination yields the constraint,

$$\nu_{j} + \sum_{j' \in J: j' \neq j} \nu_{j'} - x^{up} (1 - y_{j}) \leq \sum_{k \in K_{j}} \mu_{jk} \leq \nu_{j} + \sum_{j' \in J: j' \neq j} \nu_{j'}$$

which can be shown to be a relaxation of the analogous constraint in Approach 2,

$$\nu_j \le \sum_{k \in K_j} \mu_{jk} \le \nu_j$$

Note: $0 \leq \sum_{j' \in J: j' \neq j} v_{j'} \leq x^{up} (1 - y_j)$

Carnegie Mellon

14

Reformulation Tightness Example

Nested GDP Example: Design & Process Scheduling

 $\sum OC_{i,t}$

Carnegie Mellon

Purchases Installation & Operating Costs

$$Z = \sum_{t \in T} [p_C F_{8,t} - (p_B F_{3,t} + p_A F_{0,t})] - \sum_{r \in \mathcal{R}} IC_r - \sum_{i \in I} IC_i - \sum_{t \in T} IC_i - \sum_{t \inT} IC_i - \sum_{t$$

Tank levels

 $\begin{aligned} R_{A,t} &= R_{A,t-1} + F_{0,t} - F_{1,t} \quad \forall t \in T \\ R_{B,t} &= R_{B,t-1} + F_{2,t} + F_{3,t} - F_{4,t} + F_{5,t} \quad \forall t \in T \\ R_{C,t} &= R_{C,t-1} + F_{6,t} + F_{7,t} - F_{8,t} \quad \forall t \in T \end{aligned}$

Reactor availability

Sales

$$R_{U,t} = R_{U,t-1} - \sum_{i \in I} \Delta R_{i,t} + \sum_{i \in I} \Delta R_{i,t-\tau_i} \quad \forall t \in T$$

Tank installation (X)

$$\begin{bmatrix} X_r \\ IC_r = \alpha_r + \beta_r Q_r \end{bmatrix} \vee \begin{bmatrix} \neg X_r \\ IC_r = 0 \\ Q_r = 0 \end{bmatrix} \quad \forall r \in \mathcal{R}$$

Process selection (Y), technology selection (W)

$$\begin{bmatrix} Y_i \\ W_{i,1} \\ IC_i = \alpha_{i,1} + \beta_{i,1}Q_i \end{bmatrix} \vee \begin{bmatrix} W_{i,2} \\ IC_i = \alpha_{i,2} + \beta_{i,2}Q_i \end{bmatrix} \vee \begin{bmatrix} \neg Y_i \\ Q_i = 0 \\ IC_i = 0 \end{bmatrix} \quad \forall i \in I$$

Schedule production (N)

$$\begin{split} & N_{i,t} \\ & B_{i,t} \leq Q_i \\ & \Delta R_{i,t} = 1 \\ & F_{in,t} = B_{i,t} \\ \begin{bmatrix} W_{i,t,1} \\ F_{out,t+\tau_i} = \nu_{i,1}B_{i,t} \\ OC_{i,t} = \gamma_{i,1}B_{i,t} \end{bmatrix} \vee \begin{bmatrix} W_{i,t,2} \\ F_{out,t+\tau_i} = \nu_{i,2}B_{i,t} \\ OC_{i,t} = \gamma_{i,2}B_{i,t} \end{bmatrix} \bigvee \begin{bmatrix} V_{i,t} \\ B_{i,t} = 0 \\ \Delta R_{i,t} = 0 \\ F_{in,t} = 0 \\ F_{out,t+\tau_i} = 0 \\ OC_{i,t} = 0 \end{bmatrix} \quad \forall i \in I, t \in T \end{split}$$

Logic Propositions

Select technology for installation $Y_i \Leftrightarrow W_{i,1} \lor W_{i,2} \quad \forall i \in I$ Select operating technology $N_{i,t} \Leftrightarrow W_{i,t,1} \lor W_{i,t,2} \quad \forall i \in I, t \in T$ Match operating & installed technology $W_{i,t,m} \Rightarrow W_{i,m} \quad \forall i \in I, m \in M_i$

16

Carnegie Mellon

lyer and Grossmann (1998)

Nested GDP Example Results: Design & Process Scheduling

	Big-M Reformulation (Approach 1)	Big-M Reformulation (Approach 2)	Hull Reformulation (Approach 1)	Hull Reformulation (Approach 2)
Model Size	171 binaries 236 continuous 1,338 constraints	138 binaries 232 continuous 1,235 constraints	171 binaries 770 continuous 3,161 constraints	138 binaries 796 continuous 3,199 constraints
Relaxation Gap	94.2%	89.5% 5%		4%
Relaxation Simplex Iterations	179	211	195	154
Nodes Explored	562	2,326	0	0
Solution Time	0.68 s	1.14 s	0.22 s	0.49 s

Implementation: JuMP 1.0

Disjunctive Programming: 0.3

Solver: CPLEX 20.1 (default options)

Optimization model for power generation and transmission expansion planning

Given: Generation sources, load demand for each region, CO₂ emission limits and economic data

Coal power plants

- Natural gas power plants
- Nuclear power plants

Wind turbines

Determine: Number and type of generators / transmission lines, Unit commitments, Total cost

Goal: Long term Planning to Minimize Total Cost

Method: Large-scale multiperiod MILP model (Benders decomposition)

Limitation:

Reliability (i.e., generators or transmission lines failures) are not explicitly considered

Generation: Lara, C. L., Mallapragada, D. S., Papageorgiou, D. J., Venkatesh, A., & Grossmann, I. E. (2018). Deterministic electric power infrastructure planning: Mixedinteger programming model and nested decomposition algorithm. *European Journal of Operational Research*, 271, 1037-1054.

Generation and Transmission: Li, C., A.J. Conejo, P. Liu, B.P. Omell, J.D. Siirola, I.E. Grossmann. (2021) Mixed-integer Linear Programming Models and Algorithms for Generation and Transmission Expansion Planning of Power Systems. *European Journal of Operational Research*, 297, 1071-1082.

Problem statement

Seolhee Cho

<u>Goal</u>

Develop a <u>Generalized Disjunctive Programming model for multi-period and multi-site capacity</u> planning of reliable power generation systems

Characteristics of the model

- Dual role of backup generators depending on power demand
- Advanced probabilistic model for reliability evaluation considering redundancy

<u>Given</u>

- Regions, power stations, backup generators
- Economic data (investment & operating cost)
- · Unit reliability and electricity demand
- CO₂ emission and carbon tax

Determine

- When and where to install and retire the generators?
- Number and size of backup generators
- System reliability & expected power production

Overview of GDP optimization model

Summary of constraints

- Balance of power plant k that are available, decommissioned, and extend lifetime
- Balance and capacity of newly installed and available backup generator *j* in time *t*
- Available backup generators j in year t can either operate or remain as backup during sub-period n of year t
- Total feedstock, total expected power output, CO₂ emission, and symmetry breaking constraints
- LOLE and LOEE penalties calculation
- Failure state probability, and corresponding expected power output under specific design *h* and operation mode *m*
 - → These are calculated based on **embedded disjunctions**
 - → Two Boolean variables: $Z_{k,r,h,t}$ Planning decision, $W_{k,r,m,h,t,n}$ Operation decision

0

Nested Disjunction in GDP formulation

Illustrative example

- Two regions (R1, R2) and three different power technologies are installed (natural gas, nuclear, and biomass gasification)
- · By adding backup generators, each power plant can both expand its capacity and improve reliability

	NG/Nuclear/Biomass	Three capacities for backup generators	small/medium/large
Unit reliability (%)	90 / 95 / 95	Capacity size of backup generator (kW)	100 / 200 / 300
Installed capacity of power plant (kW)	200 / 300 / 200	Installation cost of NG by size (k\$/kW)	5 / 8 / 10
Operating cost (\$/kW)	20 / 40 / 15	Installation cost of nuclear by size (k\$)	15 / 20 / 25
Conversion efficiency (%)	40 / 45 / 40	Installation cost of biomass by size (k\$)	2.5 / 4.5 / 6
Feedstock cost (\$/MMBtu)	0.3 / 0.01 / 0.2	Average CO ₂ emission cost (\$/kg)	3
Operating cost of power plant (\$/kW)	20 / 40 / 15		
	-	•	

10

LOEE (unmet demand) penalty rate (\$/kWh)

LOEE (downtime) penalty rate (\$/hour)

5,000 22

Illustrative example:

2 regions: Natural gas/Nuclear, Nuclear/Biomass over 5 year

- Backup generator are used to produce more power (Region 2/2nd demand period)
- Reliable design and operation strategies are highly dependent by LOLE and LOEE penalties

Computational results

Approach 2	Constraints	Cont. Variables	Binary variables	CPU (sec)	Rel gap%	LP relaxation (k\$)	Cost (k\$)
Big-M	12,419	4,631	1,644	1,668.31	84.0	115.7	722.21
Hull reformulation	23,503	12,435	1,644	10.84	11.8	636.9	722.21

- Solver: Gurobi 32.1.0
- Tight bounds of convex hull reformation \rightarrow Short computational time

- Extending GDP to allow *nested disjunctions* allows explicitly modeling problems with multiple hierarchies
- Two approaches to reformulate NGDPs into MI(N)LPs have been formalized:
 - Approach 1: transforming into an equivalent single-level GDP and then reformulating
 - Approach 2: reformulating NGDP from the inside-out
- Relaxations of reformulated models via Approach 2 are shown to be as tight or tighter than their counterparts obtained via Approach 1
- Examples show superiority Approach 2

NGDPs and their reformulations to MI(N)LPs can be extended to **multi-level hierarchies:**

min Z = f(x)

s.t. $r(x) \leq 0$

 $\Omega(Y) = True$

 $x^{lo} \leq x \leq x^{up}$

 $x \in \mathbb{R}^n$

$$Y_{i_1j_1,\ldots,i_kj_k}^{(n)} \in \{True, False\} \quad \forall n \in \{1,\ldots,N\}$$