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What is this talk about

IP
Graph minors
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(IP) max{wᵀx : Ax = b, x > 0, x ∈ Zn}

Meta-question
What parameters make (IP) hard / easy?

number of variables n (Lenstra ’83)

branch-width of M(A) (Cunningham and Geelen ’07)

tree-width of G(A) (Bienstock and Muñoz ’18)

tree-depth of G(A) or G(Aᵀ) (Eiben et al ’19, Eisenbrand et al
’19, Cslovjecsek et al ’21)

. . .

maximum subdeterminant ∆(A)

td(K4) 6 4 td(K3,3) 6 4 td(P7) 6 3
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Our parameters

Definition
For ∆ ∈ Z>0, a matrix A is called totally ∆-modular if

det(A′) ∈ {−∆,−∆ + 1, . . . , 0, . . . ,∆− 1,∆}

for all square submatrices A′ of A

Given A, let ∆(A) := min{∆ : A is totally ∆-modular}

Definition
The odd cycle packing number ocp(G) is the maximum number
of vertex-disjoint odd cycles in G



Examples:

A is totally unimodular (TU) ⇐⇒ ∆(A) 6 1

A is the incidence matrix of graph G =⇒ ∆(A) = 2ocp(G)

1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 1
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Our main result(s)

Theorem (FJWY ’21)
For every integer ∆ ≥ 1 there exists a strongly polynomial-time
algorithm for solving the integer program (IP)

max{wᵀx : Ax 6 b, x ∈ Zn}

where w ∈ Zn, b ∈ Zm, and constraint matrix A ∈ Zm×n

is totally ∆-modular, and
contains at most two nonzero entries in each row (or in
each column)

Theorem (FJWY ’21)
For every integer k ≥ 0 there exists a strongly polynomial-time
algorithm for the weighted stable set problem in graphs with
ocp(G) 6 k



Previous work

1 PTAS for MWSS for ocp(G) = O(1) (Demaine, Hajiaghayi,
Kawarabayashi ’10, Tazari ’12)

2 PTAS for MWSS even for ocp(G) = O(
√

n/ log logn) (Bock,
Faenza, Moldenhauer, Ruiz-Vargas ’14)

3 (IP) can be solved in strongly polynomial-time if ∆ = 1

4 (IP) can be solved in strongly polynomial-time if ∆ = 2
(Artmann, Weismantel, Zenklusen ’17)

5 There is a polynomial-time algorithm that solves (IP) w.h.p.
over the choices of b, when A,w are fixed and ∆ is
constant (Paat, Schlöter, Weismantel ’19)

6 The diameter of P := {x : Ax 6 b} is O(∆2n4 lg n∆)
(Bonifas, Di Summa, Eisenbrand, Hähnle, Niemeier ’14)

7 max{wᵀx : Ax = b, x > 0} can be solved in time
poly(m,n, lg ∆) (Tardos ’86)
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Proximity result of Cook et al.

Theorem (Cook, Gerards, Schrijver, Tardos ’86)
Let A be a totally ∆-modular m× n matrix and let b and w be
integer vectors such that

Ax 6 b has an integral solution, and
max{wᵀx : Ax 6 b} exists.

Then for each optimal solution x̄ to max{wᵀx : Ax 6 b}, there
exists an optimal solution z∗ to max{wᵀx : Ax 6 b, x ∈ Zn} with

||x̄− z∗||∞ 6 n∆



w

n∆

x̄



1st reduction: reducing to A ∈ {−1, 0, 1}m×n

After permuting rows and columns:

A =



∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
±1 ±1
±1 ±1

±1 ±1



6 2 lg ∆

1st reduction:
Solve LP relaxation max{wᵀx : Ax 6 b} → x̄

Guess the first O(lg ∆) variables



2nd reduction: reducing to A ∈ {0, 1}m×n, b = 1

Theorem (FJWY ’21)

Let A ∈ {−1, 0, 1}m×n, b ∈ Zm, w ∈ Zn. Assume that
every row of A has 6 2 nonzeros,
P := {x : Ax 6 b} is bounded and P ∩ Zn 6= ∅.

For every extremal optimal solution x̄ to max{wᵀx : Ax 6 b},
there exists an opt. solution z∗ to max{wᵀx : Ax 6 b, x ∈ Zn}
with

||x̄− z∗||∞ 6
1

2



w



Final problem

After translating and reformulating, we get

max wᵀx
s.t. Ax 6 1

x ∈ Zn

where:
A is the edge-vertex incidence matrix of some graph G

ocp(G) 6 lg ∆

w ∈ cone(Aᵀ)
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A bounded genus surface S



Part of G is embedded in S



Plus a bounded number of large vortices



Plus small vortices



Plus a bounded number of apices



Proof uses several graph minor papers
1 Reed ’99 and Kawarabayashi and Reed ’10
2 Geelen, Gerards, Reed, Seymour, Vetta ’09
3 Kawarabayashi, Thomas, Wollan ’20
4 Diestel, Kawarabayashi, Müller, Wollan ’12
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Can assume, using Conforti, F, Huynh, Joret, Weltge ’20:
every odd cycle defines a Möbius band in S (≡ is 1-sided)
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Key insight
Instead of computing a maximum-weight stable set, compute a
minimum-cost circulation that is:

nonnegative and integer
homologous to the all-one circulation

REM: homologous to all-one ≡ 1 parity constraint + g − 1 equations

Doable with dynamic programming! (“homologous flows”)

Conforti, F, Huynh, Joret, Weltge ’20
Morell, Seidel, Weltge ’21
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Large vortices

Bounded number of large vortices
Each has a linear decomposition of bounded adhesion

1 2 3 4 5 6

u1
u2

u3

u4
u5
u6

a1
a2

a3
a4
a5

u1

u2 u3
u4

u5
u6

a1

a2 a3
a4 a5

Definition
The adhesion of the linear decomposition (X1, . . . , Xn) is
max{|Xi ∩Xi+1| : i < n}



Small vortices

From Conforti, F, Huynh, Weltge ’20:



Can assume:
large vortices are “far apart”, and bipartite



The sketch = “skeleton” of the solution
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Constructing the sketch curve by curve



Constructing the sketch curve by curve



Constructing the sketch curve by curve



Constructing the sketch curve by curve



Constructing the sketch curve by curve



Constructing the sketch curve by curve



Main algorithm is a dynamic program (DP):
1 Cells correspond to possible faces of the (partial) sketch
2 Use precedence rule for split operations to bound the

number of cells by a polynomial
3 Every curve has two corresponding separators, inside

which the solution is guessed
4 The DP remembers “just enough” extra information to

guarantee that it constructs solutions that are feasible

Subroutines:
Homologous flows (Morell, Seidel and Weltge ’21)
Bipartite stable set instances “between” separators



Open questions

1 Are IPs with bounded ∆ polytime solvable?

2 How good is the LP bound when ∆ is bounded?

3 MWSS on bounded-OCP graphs and hierarchies
(Sherali-Adams, Lasserre, . . . )

4 More efficient algorithms? FPT algorithms?
MWSS on graphs with bounded OCP
MWSS on graphs with bounded OCP and bounded genus



Any questions???
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