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and two nonzeros per row (or column)
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Graph minors
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‘(IP) max{wTz: Az =0b, x 20, z € Z”}‘

Meta-question
What parameters make (IP) hard / easy?

number of variables n (Lenstra ’83)
branch-width of M (A) (Cunningham and Geelen ’07)
tree-width of G(A) (Bienstock and Mufioz °18)

tree-depth of G(A) or G(AT) (Eiben et al 19, Eisenbrand et al
’19, Cslovjecsek et al ’21)

maximum subdeterminant A(A)

AW

td(Ky) <4 td(Kss) <4 td(Pr) <3
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Our parameters

Definition
For A € Z~, a matrix A is called totally A-modular if

det(A") € {-A,-A+1,...,0,...,A—1,A}
for all square submatrices A’ of A

Given A, let  A(A) := min{A : A is totally A-modular}

Definition
The odd cycle packing number ocp(G) is the maximum number
of vertex-disjoint odd cycles in G



Examples:

@ Ais totally unimodular (TU) <— A(A) <1

gocp(G)

@ A is the incidence matrix of graph G = A(A)

[ejejclojojooleool Nolck=h il

OO0 O0O0O0O0OHOOO-HHO

OCO0O00O0CO0O0OHOOOH~OO

OO0 O0O0O0OHOOO~=0OO0OO

[elejclolal Holclol- RN

OO0 HHOOO0OO 100000

OCOH 0000 HOOOOOO

O-HmHOO0OO0OO0O-HO0OO0OOOOOO

alalelelolololojelojololol=2"]

HOO0OOH 1000000000




Examples:

@ Ais totally unimodular (TU) <— A(A) <1

gocp(G)

@ A is the incidence matrix of graph G = A(A)

[ejejclojojooleool Nolck=h il

OO0 O0O0O0O0OHOOO-HHO

OCO0O00O0CO0O0OHOOOH~OO

OO0 O0O0O0OHOOO~=0OO0OO

[elejclolal Holclol- RN

OO0 HHOO0OO0OO 100000

OCO-H 0000 <HOOOOOO

O-H-HOO0OO0OO0O-HOOOOOOO

HHO0OO00O0~OO0OO0OO0OO0OOCO

IzleloRoRoloNoloNoNo NoNo N No Nl




Examples:

@ Ais totally unimodular (TU) <— A(A) <1

gocp(G)

@ A is the incidence matrix of graph G = A(A)

[ejejelojojoolool Nolck=h il

OO0 O0O0O0O0OHOOO--HO

OCO0O000CO0O0OHOOOHA~OO

OO0 O0O0O0OHOOO =000

o000 OO0OO0O0O 000

OO0 HHOO0OO0OO 100000

OCO-H 0000 <HOOOOOO

O-H-HOO0OO0OO0O-HOOOOOOO

HHO0OO00O0~OO0OO0OO0OO0OOCO

IzleloRoRoloNoloNoNo NoNo N No Nl




Our main result(s)

Theorem (FJWY ’21)

For every integer A > 1 there exists a strongly polynomial-time
algorithm for solving the integer program (IP)

max{w'z : Az < b, x € Z"}

where w € Z"™, b € Z™, and constraint matrix A € Z™m*"™
@ s totally A-modular, and

@ contains at most two nonzero entries in each row (or in
each column)

Theorem (FJWY ’21)

For every integer k > 0 there exists a strongly polynomial-time
algorithm for the weighted stable set problem in graphs with
ocp(G) < k



Previous work

@ PTAS for MWSS for ocp(G) = O(1) (Demaine, Hajiaghayi,
Kawarabayashi *10, Tazari ’12)

© PTAS for MWSS even for ocp(G) = O(y/n/loglogn) (Bock,
Faenza, Moldenhauer, Ruiz-Vargas *14)

© (IP) can be solved in strongly polynomial-time if A = 1

© (IP) can be solved in strongly polynomial-time if A = 2
(Artmann, Weismantel, Zenklusen ’17)

©@ There is a polynomial-time algorithm that solves (IP) w.h.p.
over the choices of b, when A, w are fixed and A is
constant (Paat, Schléter, Weismantel *19)

O The diameter of P := {x : Az < b} is O(A%n1lgnA)
(Bonifas, Di Summa, Eisenbrand, Hahnle, Niemeier *14)

Q@ max{wTz: Az = b, > 0} can be solved in time
poly(m,n,lg A) (Tardos '86)



Outline

© Reduction to MWSS



Proximity result of Cook et al.

|

Theorem (Cook, Gerards, Schrijver, Tardos '86)

Let A be a totally A-modular m x n matrix and let b and w be
integer vectors such that

@ Az < b has an integral solution, and
@ max{wTz : Az < b} exists.

Then for each optimal solution = to max{wTx : Ax < b}, there
exists an optimal solution z* to max{wTz : Az < b, x € Z"} with

[|Z — 2%||c0 < RA
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1st reduction: reducingto A € {—1,0,1}"*"

After permuting rows and columns:
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1st reduction:

@ Solve LP relaxation max{wTx : Az < b} - %

*

@ Guess the first O(1g A) variables
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2nd reduction: reducingto A € {0,1}™*", b =1

Theorem (FJWY °21)

Let A e {—1,0,1}"*" be Z™, w e Z". Assume that
@ every row of A has < 2 nonzeros,
@ P :={x: Az < b} is bounded and P N Z" # .

For every extremal optimal solution = to max{wTz : Az < b},
there exists an opt. solution z* to max{wTx : Az < b, x € Z"}
with |

17 = 2"l < 5

2






Final problem

After translating and reformulating, we get

max wlx
st. Ar <1
reZ”

where:
@ A is the edge-vertex incidence matrix of some graph G
@ ocp(G) < 1gA
@ w € cone(AT)
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e The structure theorem
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A bounded genus surface S



Part of G is embedded in S



Plus a bounded number of large vortices



Plus small vortices



Plus a bounded number of apices



Proof uses several graph minor papers
© Reed ’99 and Kawarabayashi and Reed 10
© Geelen, Gerards, Reed, Seymour, Vetta *09
© Kawarabayashi, Thomas, Wollan "20
© Diestel, Kawarabayashi, Miiller, Wollan 12



Outline

Q Particular case of bounded genus graphs






Can assume, using Conforti, F, Huynh, Joret, Weltge ’20:
@ every odd cycle defines a Mdbius band in S (

is 1-sided)
























Key insight
Instead of computing a maximum-weight stable set, compute a
minimum-cost circulation that is:

@ nonnegative and integer

@ homologous to the all-one circulation

REM: homologous to all-one = 1 parity constraint + g — 1 equations



Key insight

Instead of computing a maximum-weight stable set, compute a
minimum-cost circulation that is:

@ nonnegative and integer
@ homologous to the all-one circulation

REM: homologous to all-one = 1 parity constraint + g — 1 equations

Doable with dynamic programming! (“homologous flows”)

@ Conforti, F, Huynh, Joret, Weltge *20
@ Morell, Seidel, Weltge 21
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e Back to the general case






Large vortices

@ Bounded number of large vortices

@ Each has a linear decomposition of bounded adhesion
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The adhesion of the linear decomposition (X,...,X,,) is
max{|Xi N Xi_|_1| 1 < n}



Small vortices

From Conforti, F, Huynh, Weltge ’20:




Can assume:
@ large vortices are “far apart”, and bipartite



The sketch = “skeleton” of the solution
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The sketch = “skeleton” of the solution
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Constructing the sketch curve by curve
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Constructing the sketch curve by curve
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Main algorithm is a dynamic program (DP):
@ Cells correspond to possible faces of the (partial) sketch

© Use precedence rule for split operations to bound the
number of cells by a polynomial

© Every curve has two corresponding separators, inside
which the solution is guessed

© The DP remembers “just enough” extra information to
guarantee that it constructs solutions that are feasible

Subroutines:
@ Homologous flows (Morell, Seidel and Weltge ’21)
@ Bipartite stable set instances “between” separators



Open questions

@ Are IPs with bounded A polytime solvable?
© How good is the LP bound when A is bounded?

© MWSS on bounded-OCP graphs and hierarchies
(Sherali-Adams, Lasserre, ...)

© More efficient algorithms? FPT algorithms?

o MWSS on graphs with bounded OCP
o MWSS on graphs with bounded OCP and bounded genus



Any questions???
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