

S. Fiorini G. Joret S. Weltge Y. Yuditsky

MIP 2022, New Brunswick (NJ), May 24th 2022

What is this talk about

Graph minors

Outline

Outline

Main result, motivation and previous work

- 2 Reduction to MWSS
- 3 The structure theorem
- Particular case of bounded genus graphs
- Back to the general case

 $(\mathsf{IP}) \max\{w^{\mathsf{T}} x : Ax = b, \ x \ge 0, \ x \in \mathbb{Z}^n\}$

Meta-question

What parameters make (IP) hard / easy?

- number of variables n (Lenstra '83)
- branch-width of M(A) (Cunningham and Geelen '07)
- tree-width of G(A) (Bienstock and Muñoz '18)
- tree-depth of G(A) or G(A^T) (Eiben et al '19, Eisenbrand et al '19, Cslovjecsek et al '21)
- ...
- maximum subdeterminant $\Delta(A)$

$$td(K_4) \leq 4 \quad td(K_{3,3}) \leq 4 \quad td(P_7) \leq 3$$

(IP)
$$\max\{w^{\mathsf{T}}x : Ax = b, x \ge 0, x \in \mathbb{Z}^n\}$$

Meta-question

What parameters make (IP) hard / easy?

- number of variables n (Lenstra '83)
- branch-width of M(A) (Cunningham and Geelen '07)
- tree-width of G(A) (Bienstock and Muñoz '18)
- tree-depth of G(A) or G(A^T) (Eiben et al '19, Eisenbrand et al '19, Cslovjecsek et al '21)
- ...
- maximum subdeterminant $\Delta(A) \longleftarrow$ this work

$$td(K_4) \leq 4 \quad td(K_{3,3}) \leq 4 \quad td(P_7) \leq 3$$

Our parameters

Definition

For $\Delta \in \mathbb{Z}_{\geq 0}$, a matrix A is called *totally* Δ *-modular* if

$$\det(A') \in \{-\Delta, -\Delta + 1, \dots, 0, \dots, \Delta - 1, \Delta\}$$

for all square submatrices A' of A

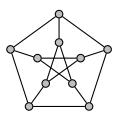
Given A, let $\Delta(A) := \min\{\Delta : A \text{ is totally } \Delta \text{-modular}\}$

Definition

The odd cycle packing number ocp(G) is the maximum number of vertex-disjoint odd cycles in G

Examples:

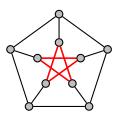
- A is totally unimodular (TU) $\iff \Delta(A) \leqslant 1$
- A is the incidence matrix of graph $G \implies \Delta(A) = 2^{\operatorname{ocp}(G)}$



/ 1	1	0	0	0	0	0	0	0	0	\mathbf{i}
0	1	1	0	0	0	0	0	0	0	- 1
0	0	1	1	0	0	0	0	0	0	1
0	0	0	1	1	0	0	0	0	0	- 1
1	0	0	0	1	0	0	0	0	0	- 1
1	0	0	0	0	1	0	0	0	0	- 1
0	1	0	0	0	0	1	0	0	0	- 1
0	0	1	0	0	0	0	1	0	0	- 1
0	0	0	1	0	0	0	0	1	0	
0	0	0	0	1	0	0	0	0	1	- 1
0	0	0	0	0	1	1	0	0	0	- 1
0	0	0	0	0	0	1	1	0	0	
0	0	0	0	0	0	0	1	1	0	- 1
0	0	0	0	0	0	0	0	1	1	1
\ 0	0	0	0	0	1	0	0	0	1	

Examples:

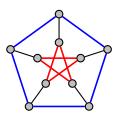
- A is totally unimodular (TU) $\iff \Delta(A) \leqslant 1$
- A is the incidence matrix of graph $G \implies \Delta(A) = 2^{\operatorname{ocp}(G)}$



1	1	1	0	0	0	0	0	0	0	0 \
1	0	1	1	0	0	0	0	0	0	0
	0	0	1	1	0	0	0	0	0	0
	0	0	0	1	1	0	0	0	0	0
	1	0	0	0	1	0	0	0	0	0
	1	0	0	0	0	1	0	0	0	0
	0	1	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	1	0	0
(0	0	0	1	0	0	0	0	1	0
	0	0	0	0	1	0	0	0	0	1
	0	0	0	0	0	1	1	0	0	0
	0	0	0	0	0	0	1	1	0	0
	0	0	0	0	0	0	0	1	1	0
	0	0	0	0	0	0	0	0	1	1
	0	0	0	0	0	1	0	0	0	1 /

Examples:

- A is totally unimodular (TU) $\iff \Delta(A) \leq 1$
- A is the incidence matrix of graph $G \implies \Delta(A) = 2^{\operatorname{ocp}(G)}$



/ 1	1	0	0	0	0	0	0	0	0	
0	1	1	0	0	0	0	0	0	0	1
0	0	1	1	0	0	0	0	0	0	1
0	0	0	1	1	0	0	0	0	0	1
1	0	0	0	1	0	0	0	0	0	
1	0	0	0	0	1	0	0	0	0	
0	1	0	0	0	0	1	0	0	0	
0	0	1	0	0	0	0	1	0	0	
0	0	0	1	0	0	0	0	1	0	
0	0	0	0	1	0	0	0	0	1	
0	0	0	0	0	1	1	0	0	0	
0	0	0	0	0	0	1	1	0	0	
0	0	0	0	0	0	0	1	1	0	
0	0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	1	0	0	0	1	/
`										·

Our main result(s)

Theorem (FJWY '21)

For every integer $\Delta \ge 1$ there exists a strongly polynomial-time algorithm for solving the integer program (IP)

 $\max\{w^{\mathsf{T}}x : Ax \leqslant b, \ x \in \mathbb{Z}^n\}$

where $w \in \mathbb{Z}^n$, $b \in \mathbb{Z}^m$, and constraint matrix $A \in \mathbb{Z}^{m \times n}$

- is totally Δ -modular, and
- contains at most two nonzero entries in each row (or in each column)

Theorem (FJWY '21)

For every integer $k \ge 0$ there exists a strongly polynomial-time algorithm for the weighted stable set problem in graphs with $ocp(G) \leqslant k$

Previous work

- PTAS for MWSS for ocp(G) = O(1) (Demaine, Hajiaghayi, Kawarabayashi '**10**, Tazari '**12**)
- **2** PTAS for MWSS even for $ocp(G) = O(\sqrt{n/\log \log n})$ (Bock, Faenza, Moldenhauer, Ruiz-Vargas '14)
- **(IP)** can be solved in strongly polynomial-time if $\Delta = 1$
- (IP) can be solved in strongly polynomial-time if $\Delta = 2$ (Artmann, Weismantel, Zenklusen '17)
- There is a polynomial-time algorithm that solves (IP) w.h.p. over the choices of b, when A, w are fixed and Δ is constant (Paat, Schlöter, Weismantel '19)
- The diameter of $P := \{x : Ax \leq b\}$ is $O(\Delta^2 n^4 \lg n\Delta)$ (Bonifas, Di Summa, Eisenbrand, Hähnle, Niemeier '14)

②
$$\max\{w^{\intercal}x : Ax = b, x \ge 0\}$$
 can be solved in time
poly(m, n, lg ∆) (Tardos '86)

Outline

1 Main result, motivation and previous work

3 The structure theorem

Particular case of bounded genus graphs

Proximity result of Cook et al.

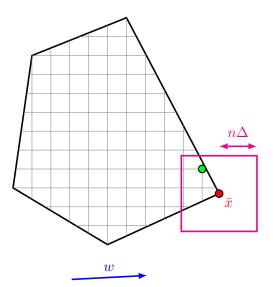
Theorem (Cook, Gerards, Schrijver, Tardos '86)

Let A be a totally $\Delta\operatorname{-modular} m\times n$ matrix and let b and w be integer vectors such that

- $Ax \leq b$ has an integral solution, and
- $\max\{w^{\mathsf{T}}x : Ax \leq b\}$ exists.

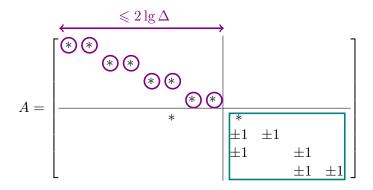
Then for each optimal solution \bar{x} to $\max\{w^{\intercal}x : Ax \leq b\}$, there exists an optimal solution z^* to $\max\{w^{\intercal}x : Ax \leq b, x \in \mathbb{Z}^n\}$ with

$$||\bar{x} - z^*||_{\infty} \leqslant n\Delta$$



1st reduction: reducing to $A \in \{-1, 0, 1\}^{m \times n}$

After permuting rows and columns:



1st reduction:

- Solve LP relaxation $\max\{w^{\mathsf{T}}x : Ax \leq b\} \to \bar{x}$
- Guess the first $O(\lg \Delta)$ variables

2nd reduction: reducing to $A \in \{0,1\}^{m \times n}$, b = 1

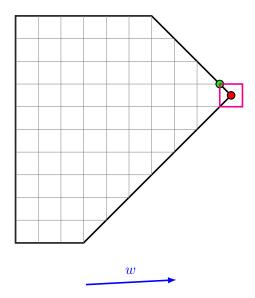
Theorem (FJWY '21)

Let $A \in \{-1, 0, 1\}^{m \times n}$, $b \in \mathbb{Z}^m$, $w \in \mathbb{Z}^n$. Assume that

- every row of A has ≤ 2 nonzeros,
- $P := \{x : Ax \leq b\}$ is bounded and $P \cap \mathbb{Z}^n \neq \emptyset$.

For every extremal optimal solution \bar{x} to $\max\{w^{\mathsf{T}}x : Ax \leq b\}$, there exists an opt. solution z^* to $\max\{w^{\mathsf{T}}x : Ax \leq b, x \in \mathbb{Z}^n\}$ with

$$||\bar{x} - z^*||_{\infty} \leqslant \frac{1}{2}$$



Final problem

After translating and reformulating, we get

 $\begin{array}{ll} \max & w^{\mathsf{T}}x\\ \text{s.t.} & Ax \leqslant \mathbf{1}\\ & x \in \mathbb{Z}^n \end{array}$

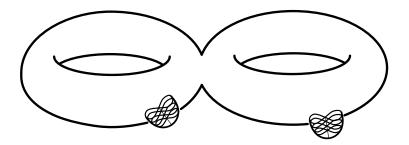
where:

- A is the edge-vertex incidence matrix of some graph G
- $\operatorname{ocp}(G) \leq \lg \Delta$
- $w \in \operatorname{cone}(A^{\intercal})$

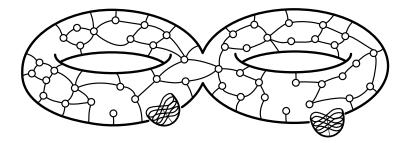
Outline

Main result, motivation and previous work

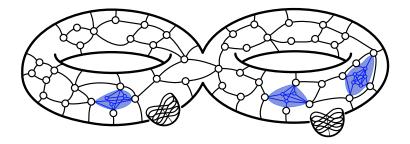
Particular case of bounded genus graphs



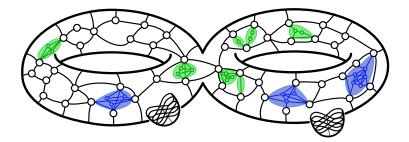
A bounded genus $\textit{surface}~\mathbb{S}$



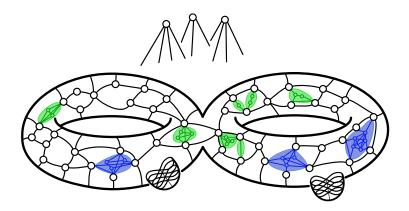
Part of G is embedded in \mathbb{S}



Plus a bounded number of large vortices



Plus small vortices



Plus a bounded number of apices

Proof uses several graph minor papers

- Reed '99 and Kawarabayashi and Reed '10
- 2 Geelen, Gerards, Reed, Seymour, Vetta '09
- Kawarabayashi, Thomas, Wollan '20
- Oiestel, Kawarabayashi, Müller, Wollan '12

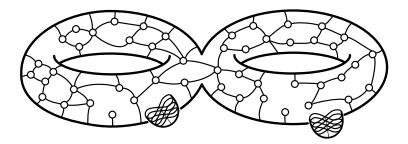
Outline

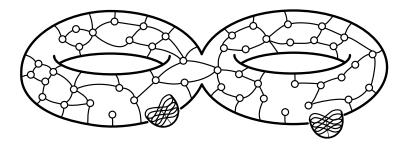
Main result, motivation and previous work

- 2 Reduction to MWSS
- 3 The structure theorem

Particular case of bounded genus graphs

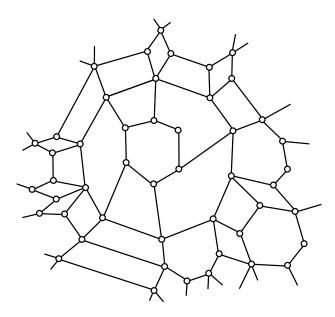
5 Back to the general case

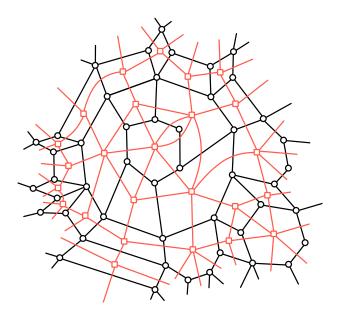


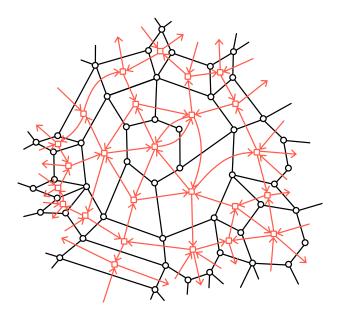


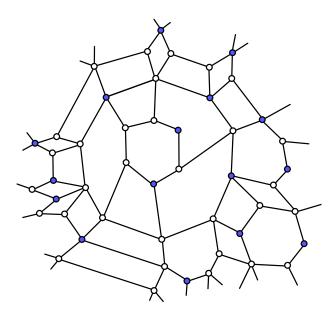
Can assume, using Conforti, <u>F</u>, Huynh, Joret, Weltge '20:

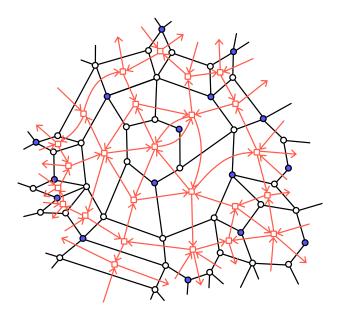
• every odd cycle defines a Möbius band in \mathbb{S} (\equiv is 1-sided)

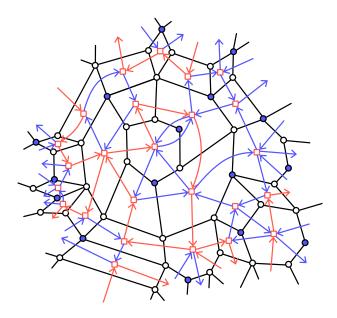


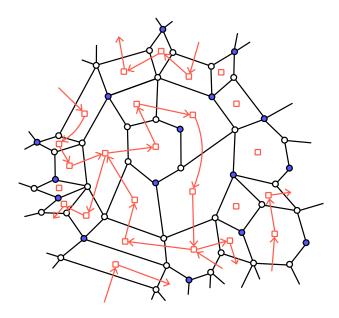












Key insight

Instead of computing a maximum-weight stable set, compute a minimum-cost circulation that is:

- nonnegative and integer
- homologous to the all-one circulation

REM: homologous to all-one $\equiv 1$ parity constraint + g - 1 equations

Key insight

Instead of computing a maximum-weight stable set, compute a minimum-cost circulation that is:

- nonnegative and integer
- homologous to the all-one circulation

REM: homologous to all-one $\equiv 1$ parity constraint + g - 1 equations

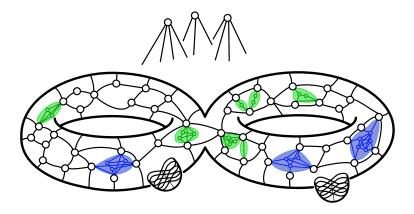
Doable with dynamic programming! ("homologous flows")

- Conforti, <u>F</u>, Huynh, Joret, Weltge '20
- Morell, Seidel, Weltge '21

Outline

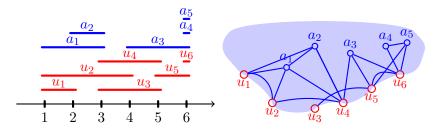
Main result, motivation and previous work

- 2 Reduction to MWSS
- 3 The structure theorem
- Particular case of bounded genus graphs



Large vortices

- Bounded number of large vortices
- Each has a linear decomposition of bounded adhesion

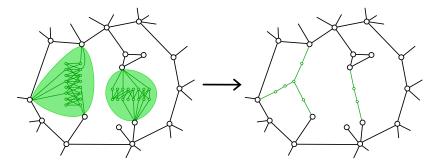


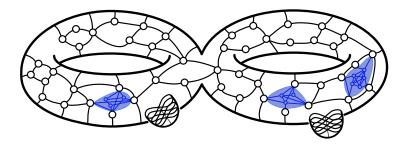
Definition

The *adhesion* of the linear decomposition (X_1, \ldots, X_n) is $\max\{|X_i \cap X_{i+1}| : i < n\}$

Small vortices

From Conforti, <u>F</u>, Huynh, Weltge '20:

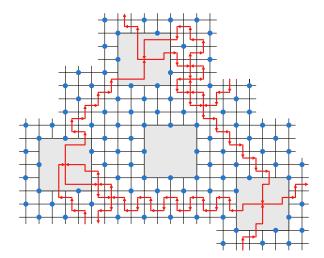




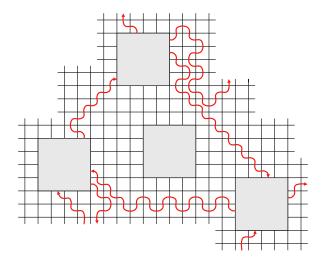
Can assume:

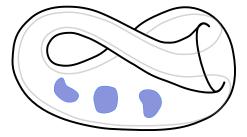
• large vortices are "far apart", and bipartite

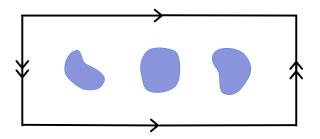
The sketch = "skeleton" of the solution

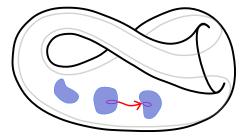


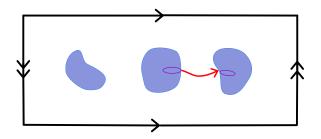
The sketch = "skeleton" of the solution

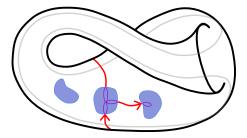


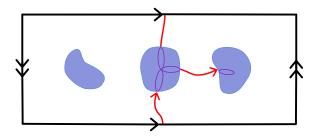


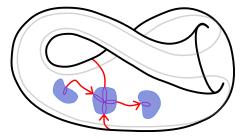


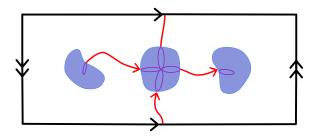


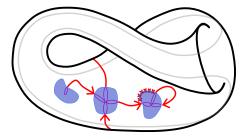


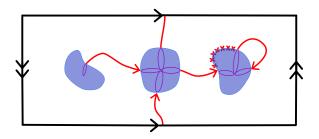


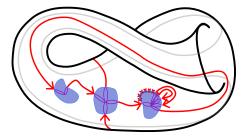


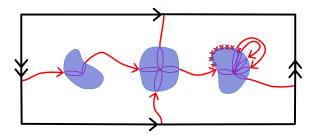












Main algorithm is a dynamic program (DP):

- Cells correspond to possible faces of the (partial) sketch
- Use precedence rule for split operations to bound the number of cells by a polynomial
- Every curve has two corresponding separators, inside which the solution is guessed
- The DP remembers "just enough" extra information to guarantee that it constructs solutions that are *feasible*

Subroutines:

- Homologous flows (Morell, Seidel and Weltge '21)
- Bipartite stable set instances "between" separators

Open questions

• Are IPs with bounded Δ polytime solvable?

- 2 How good is the LP bound when Δ is bounded?
- MWSS on bounded-OCP graphs and hierarchies (Sherali-Adams, Lasserre, ...)
- More efficient algorithms? FPT algorithms?
 - MWSS on graphs with bounded OCP
 - MWSS on graphs with bounded OCP and bounded genus

Any questions???