
Sequential penalty methods
for mixed integer programs

Marianna De Santis1 Sven de Vries2

Martin Schmidt2 Lukas Winkel2

1Department of Computer, Control, and Management Engineering,

Sapienza University of Rome, Italy

2Department of Mathematics, Trier University, Germany

MIP 2022

1

Mixed-Binary Linear Complementarity Problems

The mixed-binary linear complementarity problem (MILCP) is the
task to find a vector z ∈ Rn that satisfies

z ≥ 0

q + Mz ≥ 0

z>(q + Mz) = 0

zi ∈ {0, 1} for i ∈ I ⊆ {1, . . . , n}

or to show that no such vector exists, for given

• M ∈ Rn×n, M � 0

• q ∈ Rn

2

Application context

Linear Complementarity Problems (LCPs) are an important tool for
the modeling and analysis of equilibrium problems in economics,
mechanics, ... [Cottle, Pang, Stone; “The Linear Complementarity
Problem”; 2009]
[Gabriel, Conejo, Fuller, Hobbs; “Complementarity modeling in
energy markets”; 2012]

When a subset of variables is restricted to take integer values, i.e.,
zi ∈ Z for a given index set I ⊆ {1, . . . , n} we fall in the context of
MILCPs

3

Linear Complementarity Problems
QP reformulation

A common tool in the analysis and resolution of a Linear
Complementarity Problem (LCP) is its reformulation as Quadratic
Problem (QP) [Cottle et al.;2009]:

z ≥ 0

q + Mz ≥ 0

z>(q + Mz) = 0

min z>(q + Mz)

s.t. q + Mz ≥ 0

z ≥ 0

4

Linear Complementarity Problems
QP reformulation

A common tool in the analysis and resolution of a Linear
Complementarity Problem (LCP) is its reformulation as Quadratic
Problem (QP) [Cottle et al.;2009]:

z ≥ 0

q + Mz ≥ 0

z>(q + Mz) = 0

⇔
min z>(q + Mz)

s.t. q + Mz ≥ 0

z ≥ 0

LCP has a solution if and only if the QP
has an optimal solution with objective function value zero

4

MIQP reformulation of a MILCP

Equivalently we can reformulate a MILCP into a MIQP:

z ≥ 0

q + Mz ≥ 0

z>(q + Mz) = 0

zi ∈ {0, 1}, i ∈ I

⇔
min z>(q + Mz)

s.t. q + Mz ≥ 0

z ≥ 0

zi ∈ {0, 1}, i ∈ I

MILCP has a solution if and only if the MIQP
has an optimal solution with objective function value zero

However, the existence of a solution of the MILCP cannot
be expected in general...

5

MIQP reformulation of a MILCP

Equivalently we can reformulate a MILCP into a MIQP:

z ≥ 0

q + Mz ≥ 0

z>(q + Mz) = 0

zi ∈ {0, 1}, i ∈ I

⇔
min z>(q + Mz)

s.t. q + Mz ≥ 0

z ≥ 0

zi ∈ {0, 1}, i ∈ I

MILCP has a solution if and only if the MIQP
has an optimal solution with objective function value zero

However, the existence of a solution of the MILCP cannot
be expected in general...

5

...look for “approximate feasible solutions”

For practically relevant instances where non-existence occurs, one
is interested in “approximate feasible solutions”:

points that minimize a certain infeasibility measure that combines
both the violation of integrality conditions as well as of
complementarity constraints

6

Penalizing the violation of complementarity and integrality

min αPC (z) + (1− α)PI (z)

s.t. q + Mz ≥ 0

z ≥ 0

zi ≤ 1, i ∈ I

where

• α ∈ [0, 1]

• PC (z) is a function penalizing the violation of the
complementarity constraints

• PI (z) is a function penalizing the violation of the integrality
constraints

[Raghavachari;1969], [Giannessi, Tardella; 1998], [Zhu; 2003],
[Lucidi, Rinaldi; 2010], [De Santis, Lucidi, Rinaldi; 2013]

7

A nonconvex, nonsmooth reformulation of MILCP

min α z>(q + Mz) + (1− α)
∑

i∈I min{zi , 1− zi}

s.t. q + Mz ≥ 0

z ≥ 0

zi ≤ 1, i ∈ I

(NCref)

where

• α ∈ [0, 1]

• PC (z) = z>(q + Mz)

• PI (z) =
∑

i∈I min{zi , 1− zi}

PI (z) is concave and piecewise linear

8

Features of the penalty branch-and-bound method

In order to globally solve problem NCref , we address a sequence
of convex quadratic smooth problems that

• share the same feasible set

• progressively increase the penalization of the integrality
constraint violation

⇓
the objective function slightly changes along the iterations!

9

Features of the penalty branch-and-bound method

In order to globally solve problem NCref , we address a sequence
of convex quadratic smooth problems that

• share the same feasible set

• progressively increase the penalization of the integrality
constraint violation

⇓
the objective function slightly changes along the iterations!

9

Features of the penalty branch-and-bound method

In order to globally solve problem NCref , we address a sequence
of convex quadratic smooth problems that

• share the same feasible set

• progressively increase the penalization of the integrality
constraint violation

⇓
the objective function slightly changes along the iterations!

9

Features of the penalty branch-and-bound method

In order to globally solve problem NCref , we address a sequence
of convex quadratic smooth problems that

• share the same feasible set

• progressively increase the penalization of the integrality
constraint violation

⇓
the objective function slightly changes along the iterations!

9

Problem at the root node

At the root node of the branch-and-bound tree, we solve the
convex smooth problem

min α z>(q + Mz)

s.t. q + Mz ≥ 0

z ≥ 0

zi ≤ 1, i ∈ I

obtained from Problem (NCref) by neglecting the second term
in the objective function

10

Branching
Let z∗ be the solution of the root node relaxation

Choose an index j ∈ I such that min{z∗j , 1− z∗j } > 0
and build two children nodes:

min{z∗j , 1− z∗j } > 0

©
↙ ↘

add (1− α)zj © © add (1− α)(1− zj)

min α z>(q + Mz) + (1− α)zj

s.t. q + Mz ≥ 0

z ≥ 0, zi ≤ 1, i ∈ I

99K aims to drive zj to 0
in the respective subtree

min α z>(q + Mz) + (1− α)(1− zj)

s.t. q + Mz ≥ 0

z ≥ 0, zi ≤ 1, i ∈ I

99K aims to drive zj to 1
in the respective subtree

11

Branching
Let z∗ be the solution of the root node relaxation

Choose an index j ∈ I such that min{z∗j , 1− z∗j } > 0
and build two children nodes:

min{z∗j , 1− z∗j } > 0

©
↙ ↘

add (1− α)zj © © add (1− α)(1− zj)

min α z>(q + Mz) + (1− α)zj

s.t. q + Mz ≥ 0

z ≥ 0, zi ≤ 1, i ∈ I

99K aims to drive zj to 0
in the respective subtree

min α z>(q + Mz) + (1− α)(1− zj)

s.t. q + Mz ≥ 0

z ≥ 0, zi ≤ 1, i ∈ I

99K aims to drive zj to 1
in the respective subtree

11

Branching
Let z∗ be the solution of the root node relaxation

Choose an index j ∈ I such that min{z∗j , 1− z∗j } > 0
and build two children nodes:

min{z∗j , 1− z∗j } > 0

©
↙ ↘

add (1− α)zj © © add (1− α)(1− zj)

min α z>(q + Mz) + (1− α)zj

s.t. q + Mz ≥ 0

z ≥ 0, zi ≤ 1, i ∈ I

99K aims to drive zj to 0
in the respective subtree

min α z>(q + Mz) + (1− α)(1− zj)

s.t. q + Mz ≥ 0

z ≥ 0, zi ≤ 1, i ∈ I

99K aims to drive zj to 1
in the respective subtree

11

Branching
Let z∗ be the solution of the root node relaxation

Choose an index j ∈ I such that min{z∗j , 1− z∗j } > 0
and build two children nodes:

min{z∗j , 1− z∗j } > 0

©
↙ ↘

add (1− α)zj © © add (1− α)(1− zj)

min α z>(q + Mz) + (1− α)zj

s.t. q + Mz ≥ 0

z ≥ 0, zi ≤ 1, i ∈ I

99K aims to drive zj to 0
in the respective subtree

min α z>(q + Mz) + (1− α)(1− zj)

s.t. q + Mz ≥ 0

z ≥ 0, zi ≤ 1, i ∈ I

99K aims to drive zj to 1
in the respective subtree

11

Branching
Let z∗ be the solution of the root node relaxation

Choose an index j ∈ I such that min{z∗j , 1− z∗j } > 0
and build two children nodes:

min{z∗j , 1− z∗j } > 0

©
↙ ↘

add (1− α)zj © © add (1− α)(1− zj)

min α z>(q + Mz) + (1− α)zj

s.t. q + Mz ≥ 0

z ≥ 0, zi ≤ 1, i ∈ I

99K aims to drive zj to 0
in the respective subtree

min α z>(q + Mz) + (1− α)(1− zj)

s.t. q + Mz ≥ 0

z ≥ 0, zi ≤ 1, i ∈ I

99K aims to drive zj to 1
in the respective subtree

11

Problem at the node N = (I0, I1)
A node N = (I0, I1) is identified by two sets of indices:

• I0: set of indices j ∈ I for which (1− α)zj is added

• I1: set of indices j ∈ I for which (1− α)(1− zj) is added

The subproblem at node N = (I0, I1) is

min fN(z)

s.t. q + Mz ≥ 0

z ≥ 0

zi ≤ 1, i ∈ I

with

fN(z) = αz>(q + Mz) + (1− α)

∑
j∈I0

zj +
∑
j∈I1

(1− zj)



12

Problem at the node N = (I0, I1)
A node N = (I0, I1) is identified by two sets of indices:

• I0: set of indices j ∈ I for which (1− α)zj is added

• I1: set of indices j ∈ I for which (1− α)(1− zj) is added

The subproblem at node N = (I0, I1) is

min fN(z)

s.t. q + Mz ≥ 0

z ≥ 0

zi ≤ 1, i ∈ I

with

fN(z) = αz>(q + Mz) + (1− α)

∑
j∈I0

zj +
∑
j∈I1

(1− zj)



12

Problem at the node N = (I0, I1)
A node N = (I0, I1) is identified by two sets of indices:

• I0: set of indices j ∈ I for which (1− α)zj is added

• I1: set of indices j ∈ I for which (1− α)(1− zj) is added

The subproblem at node N = (I0, I1) is

min fN(z)

s.t. q + Mz ≥ 0

z ≥ 0

zi ≤ 1, i ∈ I

with

fN(z) = αz>(q + Mz) + (1− α)

∑
j∈I0

zj +
∑
j∈I1

(1− zj)


12

Enumerating the partitions (I0, I1) of I ⊆ {1, . . . , n}

The minimum among the optimal solutions of the problems of all
leaf nodes of the fully enumerated branch-and-bound tree is the
optimal solution of Problem (NCref):

Lemma

Let z∗ be an optimal solution of Problem (NCref) and z∗N the
solution at the node N = (I0, I1). Then,

f (z∗) = min {fN(z∗N) : N = (I0, I1) with I0 ∪ I1 = I and I0 ∩ I1 = ∅}

13

Bounding and Pruning

The optimal value fN(z∗N) of the problem defined at a node N is a
local lower bound for the subtree rooted in N:

Lemma

Let N ′ = (I ′0, I
′
1) be a successor of N = (I0, I1), i.e., I0 ⊆ I ′0 and

I1 ⊆ I ′1. Then,
fN(z∗N) ≤ fN′(z∗N′)

⇓
If z∗N is such that fN(z∗N) ≥ f (z∗inc)

every leaf of the subtree rooted in N cannot yield a better solution
than the best known solution z∗inc

and we can prune the subtree rooted in N

14

Bounding and Pruning

The optimal value fN(z∗N) of the problem defined at a node N is a
local lower bound for the subtree rooted in N:

Lemma

Let N ′ = (I ′0, I
′
1) be a successor of N = (I0, I1), i.e., I0 ⊆ I ′0 and

I1 ⊆ I ′1. Then,
fN(z∗N) ≤ fN′(z∗N′)

⇓
If z∗N is such that fN(z∗N) ≥ f (z∗inc)

every leaf of the subtree rooted in N cannot yield a better solution
than the best known solution z∗inc

and we can prune the subtree rooted in N

14

Bounding and Pruning

The optimal value fN(z∗N) of the problem defined at a node N is a
local lower bound for the subtree rooted in N:

Lemma

Let N ′ = (I ′0, I
′
1) be a successor of N = (I0, I1), i.e., I0 ⊆ I ′0 and

I1 ⊆ I ′1. Then,
fN(z∗N) ≤ fN′(z∗N′)

⇓
If z∗N is such that fN(z∗N) ≥ f (z∗inc)

every leaf of the subtree rooted in N cannot yield a better solution
than the best known solution z∗inc

and we can prune the subtree rooted in N

14

MILCP-PBB Scheme

Input: q ∈ Rn, M ∈ Rn×n, I ⊆ {1, . . . , n}, α ∈ (0, 1)
Output: A global optimum z∗ of Problem (NCref)

Set N ← {(∅, ∅)}, finc ←∞, z∗inc ← none
while N 6= ∅ do

Choose N = (I0, I1) ∈ N
Set N ← N \ {N}
Compute z∗N ∈ argmin{fN(z) : q + Mz ≥ 0, z ∈ [0, 1]n}
if f (z∗N) < finc then

Set z∗inc ← z∗N , finc ← f (z∗N)
end if
if fN(z∗N) < finc and I \ (I0 ∪ I1) 6= ∅ then

Choose j ∈ I \ (I0 ∪ I1)
Set N ← N ∪ {(I0 ∪ {j}, I1), (I0, I1 ∪ {j})}

end if
end while
return z∗inc

15

MILCP-PBB Scheme

Input: q ∈ Rn, M ∈ Rn×n, I ⊆ {1, . . . , n}, α ∈ (0, 1)
Output: A global optimum z∗ of Problem (NCref)
Set N ← {(∅, ∅)}, finc ←∞, z∗inc ← none

while N 6= ∅ do
Choose N = (I0, I1) ∈ N
Set N ← N \ {N}
Compute z∗N ∈ argmin{fN(z) : q + Mz ≥ 0, z ∈ [0, 1]n}
if f (z∗N) < finc then

Set z∗inc ← z∗N , finc ← f (z∗N)
end if
if fN(z∗N) < finc and I \ (I0 ∪ I1) 6= ∅ then

Choose j ∈ I \ (I0 ∪ I1)
Set N ← N ∪ {(I0 ∪ {j}, I1), (I0, I1 ∪ {j})}

end if
end while
return z∗inc

15

MILCP-PBB Scheme

Input: q ∈ Rn, M ∈ Rn×n, I ⊆ {1, . . . , n}, α ∈ (0, 1)
Output: A global optimum z∗ of Problem (NCref)
Set N ← {(∅, ∅)}, finc ←∞, z∗inc ← none
while N 6= ∅ do

Choose N = (I0, I1) ∈ N
Set N ← N \ {N}
Compute z∗N ∈ argmin{fN(z) : q + Mz ≥ 0, z ∈ [0, 1]n}
if f (z∗N) < finc then

Set z∗inc ← z∗N , finc ← f (z∗N)
end if
if fN(z∗N) < finc and I \ (I0 ∪ I1) 6= ∅ then

Choose j ∈ I \ (I0 ∪ I1)
Set N ← N ∪ {(I0 ∪ {j}, I1), (I0, I1 ∪ {j})}

end if
end while
return z∗inc

15

MILCP-PBB Scheme

Input: q ∈ Rn, M ∈ Rn×n, I ⊆ {1, . . . , n}, α ∈ (0, 1)
Output: A global optimum z∗ of Problem (NCref)
Set N ← {(∅, ∅)}, finc ←∞, z∗inc ← none
while N 6= ∅ do

Choose N = (I0, I1) ∈ N

Set N ← N \ {N}
Compute z∗N ∈ argmin{fN(z) : q + Mz ≥ 0, z ∈ [0, 1]n}
if f (z∗N) < finc then

Set z∗inc ← z∗N , finc ← f (z∗N)
end if
if fN(z∗N) < finc and I \ (I0 ∪ I1) 6= ∅ then

Choose j ∈ I \ (I0 ∪ I1)
Set N ← N ∪ {(I0 ∪ {j}, I1), (I0, I1 ∪ {j})}

end if
end while
return z∗inc

15

MILCP-PBB Scheme

Input: q ∈ Rn, M ∈ Rn×n, I ⊆ {1, . . . , n}, α ∈ (0, 1)
Output: A global optimum z∗ of Problem (NCref)
Set N ← {(∅, ∅)}, finc ←∞, z∗inc ← none
while N 6= ∅ do

Choose N = (I0, I1) ∈ N
Set N ← N \ {N}
Compute z∗N ∈ argmin{fN(z) : q + Mz ≥ 0, z ∈ [0, 1]n}

if f (z∗N) < finc then
Set z∗inc ← z∗N , finc ← f (z∗N)

end if
if fN(z∗N) < finc and I \ (I0 ∪ I1) 6= ∅ then

Choose j ∈ I \ (I0 ∪ I1)
Set N ← N ∪ {(I0 ∪ {j}, I1), (I0, I1 ∪ {j})}

end if
end while
return z∗inc

15

MILCP-PBB Scheme

Input: q ∈ Rn, M ∈ Rn×n, I ⊆ {1, . . . , n}, α ∈ (0, 1)
Output: A global optimum z∗ of Problem (NCref)
Set N ← {(∅, ∅)}, finc ←∞, z∗inc ← none
while N 6= ∅ do

Choose N = (I0, I1) ∈ N
Set N ← N \ {N}
Compute z∗N ∈ argmin{fN(z) : q + Mz ≥ 0, z ∈ [0, 1]n}
if f (z∗N) < finc then

Set z∗inc ← z∗N , finc ← f (z∗N)
end if

if fN(z∗N) < finc and I \ (I0 ∪ I1) 6= ∅ then
Choose j ∈ I \ (I0 ∪ I1)
Set N ← N ∪ {(I0 ∪ {j}, I1), (I0, I1 ∪ {j})}

end if
end while
return z∗inc

15

MILCP-PBB Scheme

Input: q ∈ Rn, M ∈ Rn×n, I ⊆ {1, . . . , n}, α ∈ (0, 1)
Output: A global optimum z∗ of Problem (NCref)
Set N ← {(∅, ∅)}, finc ←∞, z∗inc ← none
while N 6= ∅ do

Choose N = (I0, I1) ∈ N
Set N ← N \ {N}
Compute z∗N ∈ argmin{fN(z) : q + Mz ≥ 0, z ∈ [0, 1]n}
if f (z∗N) < finc then

Set z∗inc ← z∗N , finc ← f (z∗N)
end if
if fN(z∗N) < finc and I \ (I0 ∪ I1) 6= ∅ then

Choose j ∈ I \ (I0 ∪ I1)
Set N ← N ∪ {(I0 ∪ {j}, I1), (I0, I1 ∪ {j})}

end if
end while
return z∗inc

15

MILCP-PBB Scheme

Input: q ∈ Rn, M ∈ Rn×n, I ⊆ {1, . . . , n}, α ∈ (0, 1)
Output: A global optimum z∗ of Problem (NCref)
Set N ← {(∅, ∅)}, finc ←∞, z∗inc ← none
while N 6= ∅ do

Choose N = (I0, I1) ∈ N
Set N ← N \ {N}
Compute z∗N ∈ argmin{fN(z) : q + Mz ≥ 0, z ∈ [0, 1]n}
if f (z∗N) < finc then

Set z∗inc ← z∗N , finc ← f (z∗N)
end if
if fN(z∗N) < finc and I \ (I0 ∪ I1) 6= ∅ then

Choose j ∈ I \ (I0 ∪ I1)
Set N ← N ∪ {(I0 ∪ {j}, I1), (I0, I1 ∪ {j})}

end if
end while
return z∗inc

15

MILCP-PBB Scheme

Input: q ∈ Rn, M ∈ Rn×n, I ⊆ {1, . . . , n}, α ∈ (0, 1)
Output: A global optimum z∗ of Problem (NCref)
Set N ← {(∅, ∅)}, finc ←∞, z∗inc ← none
while N 6= ∅ do

Choose N = (I0, I1) ∈ N
Set N ← N \ {N}
Compute z∗N ∈ argmin{fN(z) : q + Mz ≥ 0, z ∈ [0, 1]n}
if f (z∗N) < finc then

Set z∗inc ← z∗N , finc ← f (z∗N)
end if
if fN(z∗N) < finc and I \ (I0 ∪ I1) 6= ∅ then

Choose j ∈ I \ (I0 ∪ I1)
Set N ← N ∪ {(I0 ∪ {j}, I1), (I0, I1 ∪ {j})}

end if
end while

return z∗inc

15

MILCP-PBB Scheme

Input: q ∈ Rn, M ∈ Rn×n, I ⊆ {1, . . . , n}, α ∈ (0, 1)
Output: A global optimum z∗ of Problem (NCref)
Set N ← {(∅, ∅)}, finc ←∞, z∗inc ← none
while N 6= ∅ do

Choose N = (I0, I1) ∈ N
Set N ← N \ {N}
Compute z∗N ∈ argmin{fN(z) : q + Mz ≥ 0, z ∈ [0, 1]n}
if f (z∗N) < finc then

Set z∗inc ← z∗N , finc ← f (z∗N)
end if
if fN(z∗N) < finc and I \ (I0 ∪ I1) 6= ∅ then

Choose j ∈ I \ (I0 ∪ I1)
Set N ← N ∪ {(I0 ∪ {j}, I1), (I0, I1 ∪ {j})}

end if
end while
return z∗inc

15

Finite termination

Theorem

Algorithm MILCP-PBB terminates after finitely many steps with a
global optimal solution of Problem (NCref).

Remark

Note that in our branch-and-bound method, there is no direct
analogy to pruning due to infeasibility.

In case at a node we find a feasible solution for the MILCP we stop
the algorithm

16

Finite termination

Theorem

Algorithm MILCP-PBB terminates after finitely many steps with a
global optimal solution of Problem (NCref).

Remark

Note that in our branch-and-bound method, there is no direct
analogy to pruning due to infeasibility.

In case at a node we find a feasible solution for the MILCP we stop
the algorithm

16

Adding simple cuts

Within the node subproblem we include simple bound constraints:

min fN(z)

s.t. q + Mz ≥ 0

z ∈ [0, 1]n

zj ≤ 0.5 if j ∈ I0

zj ≥ 0.5 if j ∈ I1

Lemma

Let z∗N be an optimal solution at node N when simple cuts are
included. Then,

f (z∗) = min {fN(z∗N) : N = (I0, I1) with I0 ∪ I1 = I}

17

Adding simple cuts

Within the node subproblem we include simple bound constraints:

min fN(z)

s.t. q + Mz ≥ 0

z ∈ [0, 1]n

zj ≤ 0.5 if j ∈ I0

zj ≥ 0.5 if j ∈ I1

Lemma

Let z∗N be an optimal solution at node N when simple cuts are
included. Then,

f (z∗) = min {fN(z∗N) : N = (I0, I1) with I0 ∪ I1 = I}

17

Adding simple cuts
finite termination

Lemma

Let N ′ = (I ′0, I
′
1) be a successor of some node N = (I0, I1) in the

branching tree, i.e., I0 ⊆ I ′0 and I1 ⊆ I ′1 holds. Further, let z∗N , z
∗
N′

be optimal solutions of nodes N and N ′, respectively, when simple
cuts are used. Then,

fN(z∗N) ≤ fN′(z∗N′)

holds.

Theorem

Algorithm MILCP-PBB remains correct when simple cuts

zj ≤ 0.5 for all j ∈ I0, zj ≥ 0.5 for all j ∈ I1

are added at any node N = (I0, I1).

18

Numerical results
Randomly generated instances

We built matrices M ∈ Rn×n with
n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}.

We then built vectors q ∈ Rn in four different ways, each reflecting
a certain “degree of feasibility” in the resulting instance.

More precisely, we built instances for which z ∈ Rn exists so that

(a) only q + Mz ≥ 0, z ≥ 0 are guaranteed to be satisfied,

(b) only q + Mz ≥ 0, z ≥ 0 and zi ∈ {0, 1}, i ∈ I are guaranteed
to be satisfied,

(c) only q + Mz ≥ 0, z ≥ 0 and complementarity
(z∗>(q + Mz∗) = 0) are guaranteed to be satisfied,

We created 10 instances for every size n and the types (a)–(c),
yielding 300 different instances in total.

19

Numerical results
Randomly generated instances

We built matrices M ∈ Rn×n with
n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}.

We then built vectors q ∈ Rn in four different ways, each reflecting
a certain “degree of feasibility” in the resulting instance.

More precisely, we built instances for which z ∈ Rn exists so that

(a) only q + Mz ≥ 0, z ≥ 0 are guaranteed to be satisfied,

(b) only q + Mz ≥ 0, z ≥ 0 and zi ∈ {0, 1}, i ∈ I are guaranteed
to be satisfied,

(c) only q + Mz ≥ 0, z ≥ 0 and complementarity
(z∗>(q + Mz∗) = 0) are guaranteed to be satisfied,

We created 10 instances for every size n and the types (a)–(c),
yielding 300 different instances in total.

19

Numerical results
Randomly generated instances

We built matrices M ∈ Rn×n with
n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}.

We then built vectors q ∈ Rn in four different ways, each reflecting
a certain “degree of feasibility” in the resulting instance.

More precisely, we built instances for which z ∈ Rn exists so that

(a) only q + Mz ≥ 0, z ≥ 0 are guaranteed to be satisfied,

(b) only q + Mz ≥ 0, z ≥ 0 and zi ∈ {0, 1}, i ∈ I are guaranteed
to be satisfied,

(c) only q + Mz ≥ 0, z ≥ 0 and complementarity
(z∗>(q + Mz∗) = 0) are guaranteed to be satisfied,

We created 10 instances for every size n and the types (a)–(c),
yielding 300 different instances in total.

19

Numerical results
Randomly generated instances

We built matrices M ∈ Rn×n with
n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}.

We then built vectors q ∈ Rn in four different ways, each reflecting
a certain “degree of feasibility” in the resulting instance.

More precisely, we built instances for which z ∈ Rn exists so that

(a) only q + Mz ≥ 0, z ≥ 0 are guaranteed to be satisfied,

(b) only q + Mz ≥ 0, z ≥ 0 and zi ∈ {0, 1}, i ∈ I are guaranteed
to be satisfied,

(c) only q + Mz ≥ 0, z ≥ 0 and complementarity
(z∗>(q + Mz∗) = 0) are guaranteed to be satisfied,

We created 10 instances for every size n and the types (a)–(c),
yielding 300 different instances in total.

19

Numerical results
Randomly generated instances

We built matrices M ∈ Rn×n with
n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}.

We then built vectors q ∈ Rn in four different ways, each reflecting
a certain “degree of feasibility” in the resulting instance.

More precisely, we built instances for which z ∈ Rn exists so that

(a) only q + Mz ≥ 0, z ≥ 0 are guaranteed to be satisfied,

(b) only q + Mz ≥ 0, z ≥ 0 and zi ∈ {0, 1}, i ∈ I are guaranteed
to be satisfied,

(c) only q + Mz ≥ 0, z ≥ 0 and complementarity
(z∗>(q + Mz∗) = 0) are guaranteed to be satisfied,

We created 10 instances for every size n and the types (a)–(c),
yielding 300 different instances in total.

19

Numerical results
Randomly generated instances

We built matrices M ∈ Rn×n with
n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}.

We then built vectors q ∈ Rn in four different ways, each reflecting
a certain “degree of feasibility” in the resulting instance.

More precisely, we built instances for which z ∈ Rn exists so that

(a) only q + Mz ≥ 0, z ≥ 0 are guaranteed to be satisfied,

(b) only q + Mz ≥ 0, z ≥ 0 and zi ∈ {0, 1}, i ∈ I are guaranteed
to be satisfied,

(c) only q + Mz ≥ 0, z ≥ 0 and complementarity
(z∗>(q + Mz∗) = 0) are guaranteed to be satisfied,

We created 10 instances for every size n and the types (a)–(c),
yielding 300 different instances in total.

19

Numerical results on the use of simple cuts
Performance Profiles

0 1 2 3 4 5 6
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 so

lv
ed

No Cuts
All Simple Cuts

0 1 2 3 4 5
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 so

lv
ed

No Cuts
All Simple Cuts

Figure: Performance profiles: number of nodes (left), running time (right)

20

Numerical comparison on branching rules
Performance Profiles

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 so

lv
ed

Random Choice
MIQP-Based Branching
Pseudocost Branching
Most-Fractional Variable

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 so

lv
ed

Random Choice
MIQP-Based Branching
Pseudocost Branching
Most-Fractional Variable

Figure: Performance profiles: number of nodes (left), running time (right)

21

MIQP-based branching rule

We presolve single-binary-variable MIQPs, one for each zj , j ∈ I :

min
z∈Rn

z>(q + Mz) (1a)

s.t. q + Mz ≥ 0, z ≥ 0, (1b)

zj ∈ {0, 1}. (1c)

measuring the impact of the j-th variable on the infeasibility of the
problem

We sort the indices j ∈ I in decreasing order with respect to the
optimal objective function values

22

MIQP-based branching rule

We presolve single-binary-variable MIQPs, one for each zj , j ∈ I :

min
z∈Rn

z>(q + Mz) (1a)

s.t. q + Mz ≥ 0, z ≥ 0, (1b)

zj ∈ {0, 1}. (1c)

measuring the impact of the j-th variable on the infeasibility of the
problem

We sort the indices j ∈ I in decreasing order with respect to the
optimal objective function values

22

Comparison with other approaches
An MILP reformulation, with additional binary variables and big-M constraints

[Gabriel, Conejo, Ruiz, Siddiqui; 2013]

min
z,z ′,z ′′,ρ,σ

α

n∑
i=1

ρi + (1− α)
∑
i∈I

σi (2a)

s.t. z ≥ 0, q + Mz ≥ 0, (2b)

z ≤ Bz ′ + ρ, (2c)

q + Mz ≤ B(1− z ′) + ρ, (2d)

0 ≤ zI ≤ z ′′ + σ, (2e)

z ′′ − σ ≤ zI ≤ 1, (2f)

z ∈ Rn, z ′ ∈ {0, 1}n, z ′′ ∈ {0, 1}I , (2g)

σ ∈ RI
≥0, ρ ∈ Rn

≥0. (2h)

variables: 3n + 2|I |, (n + |I | constrained to be binary)

23

Comparison with other approaches
An MIQP reformulation, no big-M constraints

min
z,z ′,σ

αz>(q + Mz) + (1− α)
∑
i∈I

σi (3a)

s.t. z ≥ 0, q + Mz ≥ 0, (3b)

0 ≤ zI ≤ z ′ + σ, (3c)

z ′ − σ ≤ zI ≤ 1, (3d)

z ∈ Rn, z ′ ∈ {0, 1}I , (3e)

σ ∈ RI
≥0. (3f)

variables: n + 2|I |, (|I | constrained to be binary)

24

Comparison with GUROBI addressing the MILP and the
MIQP reformulations

0 2 4 6 8 10 12 14
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 so

lv
ed

MILCP-PBB
MIQP Reformulation
MILP Reformulation

0 2 4 6 8 10
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 so

lv
ed

MILCP-PBB
MIQP Reformulation
MILP Reformulation

Figure: Performance profiles: number of nodes (left), running time (right)

25

Comparison with GUROBI addressing the MIQP
Harder test set (300 instances with n = 100, . . . , 600)

0 2 4 6 8 10
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 so

lv
ed

MILCP-PBB
MIQP Reformulation

0 1 2 3 4
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 so

lv
ed

MILCP-PBB
MIQP Reformulation

Figure: Performance profiles: number of nodes (left), running time (right)

26

Conclusions

We presented a penalty branch-and-bound method for MILCPs

• the method is able to compute a solution if one exists or it
computes an approximate solution that minimizes an
infeasibility measure based on the violation of the integrality
and complementarity conditions of the problem

• the objective function slightly changes along the nodes so that
the penalization of the integrality constraint violation is
progressively increased

27

Future work
...useful for MILPs?

Under specific assumption on P = {x ∈ Rn : Ax ≤ b} we can
prove that ε > 0 exists such that

min c>x

s.t. Ax ≤ b

xi ∈ {0, 1}, i ∈ I

⇔
min c>x + 1

ε

∑
i∈I min{xi , 1− xi}

s.t. Ax ≤ b

x ∈ [0, 1]n

we can use our branch-and-bound framework to solve the
nonconvex nonsmooth reformulation of MILPs!

Thanks for your attention!

28

Future work
...useful for MILPs?

Under specific assumption on P = {x ∈ Rn : Ax ≤ b} we can
prove that ε > 0 exists such that

min c>x

s.t. Ax ≤ b

xi ∈ {0, 1}, i ∈ I

⇔
min c>x + 1

ε

∑
i∈I min{xi , 1− xi}

s.t. Ax ≤ b

x ∈ [0, 1]n

we can use our branch-and-bound framework to solve the
nonconvex nonsmooth reformulation of MILPs!

Thanks for your attention!

28

Future work
...useful for MILPs?

Under specific assumption on P = {x ∈ Rn : Ax ≤ b} we can
prove that ε > 0 exists such that

min c>x

s.t. Ax ≤ b

xi ∈ {0, 1}, i ∈ I

⇔
min c>x + 1

ε

∑
i∈I min{xi , 1− xi}

s.t. Ax ≤ b

x ∈ [0, 1]n

we can use our branch-and-bound framework to solve the
nonconvex nonsmooth reformulation of MILPs!

Thanks for your attention!

28

