Sequential penalty methods for mixed integer programs

Marianna De Santis1 Sven de Vries2
Martin Schmidt2 Lukas Winkel2

1Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Italy
2Department of Mathematics, Trier University, Germany

MIP 2022
The mixed-binary linear complementarity problem (MILCP) is the task to find a vector $z \in \mathbb{R}^n$ that satisfies

$$z \geq 0$$
$$q + Mz \geq 0$$
$$z^\top (q + Mz) = 0$$

$z_i \in \{0, 1\}$ for $i \in I \subseteq \{1, \ldots, n\}$

or to show that no such vector exists, for given

- $M \in \mathbb{R}^{n \times n}$, $M \succeq 0$
- $q \in \mathbb{R}^n$
Linear Complementarity Problems (LCPs) are an important tool for the modeling and analysis of equilibrium problems in economics, mechanics, ... [Cottle, Pang, Stone; “The Linear Complementarity Problem”; 2009]
[Gabriel, Conejo, Fuller, Hobbs; “Complementarity modeling in energy markets”; 2012]

When a subset of variables is restricted to take integer values, i.e., $z_i \in \mathbb{Z}$ for a given index set $I \subseteq \{1, \ldots, n\}$ we fall in the context of MILCPs
A common tool in the analysis and resolution of a Linear Complementarity Problem (LCP) is its reformulation as Quadratic Problem (QP) [Cottle et al.;2009]:

\[
\begin{align*}
 z & \geq 0 \\
 q + Mz & \geq 0 \\
 z^T(q + Mz) & = 0
\end{align*}
\]

\[
\begin{align*}
 \text{min} \quad & z^T(q + Mz) \\
 \text{s.t.} \quad & q + Mz \geq 0 \\
 & z \geq 0
\end{align*}
\]
A common tool in the analysis and resolution of a Linear Complementarity Problem (LCP) is its reformulation as Quadratic Problem (QP) [Cottle et al.;2009]:

\[
\begin{align*}
 z & \geq 0 \\
 q + Mz & \geq 0 \\
 z^T(q + Mz) & = 0
\end{align*}
\]

\[\iff\]

\[
\begin{align*}
 \min & \quad z^T(q + Mz) \\
 \text{s.t.} & \quad q + Mz \geq 0 \\
 & \quad z \geq 0
\end{align*}
\]

LCP has a solution if and only if the QP has an optimal solution with objective function value zero.
MIQP reformulation of a MILCP

Equivalently we can reformulate a MILCP into a MIQP:

\[z \geq 0 \]
\[q + Mz \geq 0 \]
\[z^T(q + Mz) = 0 \]
\[z_i \in \{0, 1\}, \ i \in I \]

\[\begin{array}{c}
\text{min} & z^T(q + Mz) \\
\text{s.t.} & q + Mz \geq 0 \\
& z \geq 0 \\
& z_i \in \{0, 1\}, \ i \in I
\end{array} \]

MILCP has a solution if and only if the MIQP has an optimal solution with objective function value zero.
MIQP reformulation of a MILCP

Equivalently we can reformulate a MILCP into a MIQP:

\[
\begin{align*}
 z &\geq 0 \\
 q + Mz &\geq 0 \\
 z^T(q + Mz) &\geq 0 \\
 z_i &\in \{0, 1\}, \ i \in I
\end{align*}
\]

\[
\begin{align*}
 \min \quad & z^T(q + Mz) \\
 \text{s.t.} \quad & q + Mz \geq 0 \\
 & z \geq 0 \\
 & z_i \in \{0, 1\}, \ i \in I
\end{align*}
\]

MILCP has a solution if and only if the MIQP has an optimal solution with objective function value zero

However, the existence of a solution of the MILCP cannot be expected in general...
...look for “approximate feasible solutions”

For practically relevant instances where non-existence occurs, one is interested in “approximate feasible solutions”:

points that minimize a certain infeasibility measure that combines both the violation of integrality conditions as well as of complementarity constraints
Penalizing the violation of complementarity and integrality

\[
\begin{align*}
\min & \quad \alpha P_C(z) + (1 - \alpha) P_I(z) \\
\text{s.t.} & \quad q + Mz \geq 0 \\
& \quad z \geq 0 \\
& \quad z_i \leq 1, \quad i \in I
\end{align*}
\]

where

- \(\alpha \in [0, 1] \)
- \(P_C(z) \) is a function penalizing the violation of the complementarity constraints
- \(P_I(z) \) is a function penalizing the violation of the integrality constraints

[Raghavachari;1969], [Giannessi, Tardella; 1998], [Zhu; 2003], [Lucidi, Rinaldi; 2010], [De Santis, Lucidi, Rinaldi; 2013]
A nonconvex, nonsmooth reformulation of MILCP

\[
\begin{align*}
\min & \quad \alpha z^\top (q + Mz) + (1 - \alpha) \sum_{i \in I} \min \{z_i, 1 - z_i\} \\
\text{s.t.} & \quad q + Mz \geq 0 \\
& \quad z \geq 0 \\
& \quad z_i \leq 1, \quad i \in I
\end{align*}
\]

\((NC_{ref})\)

where

- \(\alpha \in [0, 1]\)
- \(P_C(z) = z^\top (q + Mz)\)
- \(P_I(z) = \sum_{i \in I} \min \{z_i, 1 - z_i\}\)

\(P_I(z)\) is concave and piecewise linear
Features of the *penalty* branch-and-bound method

In order to globally solve problem NC$_{ref}$, we address a sequence of convex quadratic smooth problems that
Features of the *penalty* branch-and-bound method

In order to globally solve problem NC_{ref}, we address a **sequence of convex quadratic smooth problems** that

- share the same feasible set
Features of the *penalty* branch-and-bound method

In order to globally solve problem NC_{ref}, we address a sequence of convex quadratic smooth problems that

- share the same feasible set
- progressively increase the penalization of the integrality constraint violation
Features of the *penalty* branch-and-bound method

In order to globally solve problem NC_{ref}, we address a sequence of convex quadratic smooth problems that

- share the same feasible set
- progressively increase the penalization of the integrality constraint violation

\[\Downarrow \]
the objective function slightly changes along the iterations!
Problem at the root node

At the **root node** of the branch-and-bound tree, we solve the convex smooth problem

\[
\begin{align*}
\min & \quad \alpha z^T (q + Mz) \\
\text{s.t.} & \quad q + Mz \geq 0 \\
& \quad z \geq 0 \\
& \quad z_i \leq 1, \quad i \in I
\end{align*}
\]

obtained from Problem \((\text{NC}_{\text{ref}})\) by **neglecting the second term in the objective function**
Branching

Let z^* be the solution of the root node relaxation
Branching

Let z^* be the solution of the root node relaxation

Choose an index $j \in I$ such that
$$\min\{z_j^*, 1 - z_j^*\} > 0$$

and build two children nodes:
Branching

Let z^* be the solution of the root node relaxation

Choose an index $j \in I$ such that $\min\{z_j^*, 1 - z_j^*\} > 0$ and build two children nodes:

$$\min\{z_j^*, 1 - z_j^*\} > 0$$

$$\text{add } (1 - \alpha)z_j$$

$$\text{add } (1 - \alpha)(1 - z_j)$$
Branching

Let z^* be the solution of the root node relaxation

Choose an index $j \in I$ such that $\min\{z^*_j, 1 - z^*_j\} > 0$ and build two children nodes:

\[
\min\{z^*_j, 1 - z^*_j\} > 0
\]

\[
\text{add } (1 - \alpha)z_j \\
\text{add } (1 - \alpha)(1 - z_j)
\]

\[
\min \alpha z^T(q + Mz) + (1 - \alpha)z
\]

s.t. \[q + Mz \geq 0\]

\[
z \geq 0, \quad z_i \leq 1, \quad i \in I
\]

\[\text{aims to drive } z_j \text{ to 0 in the respective subtree}\]
Branching

Let z^* be the solution of the root node relaxation

Choose an index $j \in I$ such that $\min\{z_j^*, 1 - z_j^*\} > 0$ and build two children nodes:

$$\min\{z_j^*, 1 - z_j^*\} > 0$$

- add $(1 - \alpha)z_j$
- add $(1 - \alpha)(1 - z_j)$

\[
\begin{align*}
\min \quad & \alpha z^T(q + Mz) + (1 - \alpha)z_j \\
\text{s.t.} \quad & q + Mz \geq 0 \\
& z \geq 0, \quad z_i \leq 1, \quad i \in I
\end{align*}
\]

--→ aims to drive z_j to 0 in the respective subtree

\[
\begin{align*}
\min \quad & \alpha z^T(q + Mz) + (1 - \alpha)(1 - z_j) \\
\text{s.t.} \quad & q + Mz \geq 0 \\
& z \geq 0, \quad z_i \leq 1, \quad i \in I
\end{align*}
\]

--→ aims to drive z_j to 1 in the respective subtree
Problem at the node $N = (l_0, l_1)$

A node $N = (l_0, l_1)$ is identified by two sets of indices:

- I_0: set of indices $j \in I$ for which $(1 - \alpha)z_j$ is added
- I_1: set of indices $j \in I$ for which $(1 - \alpha)(1 - z_j)$ is added

The subproblem at node $N = (I_0, I_1)$ is

\[
\min f_N(z) \quad \text{s.t.} \quad q + Mz \geq 0, \quad z \geq 0, \quad z_i \leq 1, \quad i \in I
\]

with

\[
f_N(z) = \alpha z^\top (q + Mz) + (1 - \alpha) \left(\sum_{j \in I_0} z_j + \sum_{j \in I_1} (1 - z_j) \right)
\]
Problem at the node $N = (l_0, l_1)$

A node $N = (l_0, l_1)$ is identified by two sets of indices:

- l_0: set of indices $j \in l$ for which $(1 - \alpha)z_j$ is added
- l_1: set of indices $j \in l$ for which $(1 - \alpha)(1 - z_j)$ is added

The subproblem at node $N = (l_0, l_1)$ is

$$\min f_N(z)$$

s.t.

$$q + Mz \geq 0$$
$$z \geq 0$$
$$z_i \leq 1, \quad i \in I$$

with

$$f_N(z) = \alpha z^\top (q + Mz) + (1 - \alpha) \left(\sum_{j \in I_0} z_j + \sum_{j \in I_1} (1 - z_j) \right)$$
Problem at the node $N = (l_0, l_1)$

A node $N = (l_0, l_1)$ is identified by two sets of indices:

- l_0: set of indices $j \in I$ for which $(1 - \alpha)z_j$ is added
- l_1: set of indices $j \in I$ for which $(1 - \alpha)(1 - z_j)$ is added

The subproblem at node $N = (l_0, l_1)$ is

$$
\begin{align*}
\min & \quad f_N(z) \\
\text{s.t.} & \quad q + Mz \geq 0 \\
& \quad z \geq 0 \\
& \quad z_i \leq 1, \quad i \in I
\end{align*}
$$

with

$$
f_N(z) = \alpha z^\top (q + Mz) + (1 - \alpha) \left(\sum_{j \in l_0} z_j + \sum_{j \in l_1} (1 - z_j) \right)
$$
Enumerating the partitions \((I_0, I_1)\) of \(I \subseteq \{1, \ldots, n\}\)

The minimum among the optimal solutions of the problems of \textbf{all leaf nodes} of the fully enumerated branch-and-bound tree is the optimal solution of Problem \((NC_{\text{ref}})\):

\begin{lemma}
Let \(z^*\) be an optimal solution of Problem \((NC_{\text{ref}})\) and \(z^*_N\) the solution at the node \(N = (I_0, I_1)\). Then,

\[f(z^*) = \min \{ f_N(z^*_N) : N = (I_0, I_1) \text{ with } I_0 \cup I_1 = I \text{ and } I_0 \cap I_1 = \emptyset \} \]
\end{lemma}
Bounding and Pruning

The optimal value $f_{N}(z_{N}^{*})$ of the problem defined at a node N is a local lower bound for the subtree rooted in N:

Lemma

Let $N' = (l'_0, l'_1)$ be a successor of $N = (l_0, l_1)$, i.e., $l_0 \subseteq l'_0$ and $l_1 \subseteq l'_1$. Then,

$$f_{N}(z_{N}^{*}) \leq f_{N'}(z_{N'}^{*})$$
Bounding and Pruning

The optimal value $f_N(z_N^*)$ of the problem defined at a node N is a local lower bound for the subtree rooted in N:

Lemma

Let $N' = (I'_0, I'_1)$ be a successor of $N = (I_0, I_1)$, i.e., $I_0 \subseteq I'_0$ and $I_1 \subseteq I'_1$. Then,

$$f_N(z_N^*) \leq f_{N'}(z_{N'}^*)$$

$$\Downarrow$$

If z_N^* is such that $f_N(z_N^*) \geq f(z_{inc}^*)$

every leaf of the subtree rooted in N cannot yield a better solution than the best known solution z_{inc}^*
The optimal value $f_N(z_N^*)$ of the problem defined at a node N is a local lower bound for the subtree rooted in N:

Lemma

Let $N' = (l'_0, l'_1)$ be a successor of $N = (l_0, l_1)$, i.e., $l_0 \subseteq l'_0$ and $l_1 \subseteq l'_1$. Then,

$$f_N(z_N^*) \leq f_{N'}(z_{N'}^*)$$

↓

If z_N^* is such that $f_N(z_N^*) \geq f(z_{inc}^*)$

every leaf of the subtree rooted in N cannot yield a better solution than the best known solution z_{inc}^*

and **we can prune the subtree rooted in N**
MILCP–PBB Scheme

Input: \(q \in \mathbb{R}^n, M \in \mathbb{R}^{n \times n}, I \subseteq \{1, \ldots, n\}, \alpha \in (0, 1) \)

Output: A global optimum \(z^* \) of Problem (NC_{ref})

Set \(N \leftarrow \{(\emptyset, \emptyset)\}, f_{\text{inc}} \leftarrow \infty, z_{\text{inc}}^* \leftarrow \text{none} \)

while \(N \neq \emptyset \) do

Choose \(N = (I_0, I_1) \in N \)

Set \(N \leftarrow N \setminus \{N\} \)

Compute \(z_{\text{N}}^* \in \arg\min \{f_N(z) : q + Mz \geq 0, z \in [0, 1]^n\} \)

if \(f(z_{\text{N}}^*) < f_{\text{inc}} \) then

Set \(z_{\text{inc}}^* \leftarrow z_{\text{N}}^*, f_{\text{inc}} \leftarrow f(z_{\text{N}}^*) \)

end if

if \(f_N(z_{\text{N}}^*) < f_{\text{inc}} \) and \(I \setminus (I_0 \cup I_1) \neq \emptyset \) then

Choose \(j \in I \setminus (I_0 \cup I_1) \)

Set \(N \leftarrow N \cup \{(I_0 \cup \{j\}, I_1), (I_0, I_1 \cup \{j\})\} \)

end if

end while

return \(z_{\text{inc}}^* \)
MILCP–PBB Scheme

Input: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$, $I \subseteq \{1, \ldots, n\}$, $\alpha \in (0, 1)$

Output: A global optimum z^* of Problem (NC\textsubscript{ref})

Set $\mathcal{N} \leftarrow \{()\}$, $f_{\text{inc}} \leftarrow \infty$, $z^*_{\text{inc}} \leftarrow \text{none}$
MILCP–PBB Scheme

Input: \(q \in \mathbb{R}^n, M \in \mathbb{R}^{n \times n}, I \subseteq \{1, \ldots, n\}, \alpha \in (0, 1) \)

Output: A global optimum \(z^* \) of Problem \((\text{NC}_{\text{ref}})\)

Set \(\mathcal{N} \leftarrow \{(\emptyset, \emptyset)\}, f_{\text{inc}} \leftarrow \infty, z_{\text{inc}} \leftarrow \text{none} \)

while \(\mathcal{N} \neq \emptyset \) **do**
MILCP–PBB Scheme

Input: \(q \in \mathbb{R}^n, M \in \mathbb{R}^{n \times n}, I \subseteq \{1, \ldots, n\}, \alpha \in (0, 1) \)

Output: A global optimum \(z^* \) of Problem \((\text{NC}_{\text{ref}})\)

Set \(\mathcal{N} \leftarrow \{(\emptyset, \emptyset)\} \), \(f_{\text{inc}} \leftarrow \infty \), \(z_{\text{inc}} \leftarrow \text{none} \)

while \(\mathcal{N} \neq \emptyset \) do
 Choose \(N = (I_0, I_1) \in \mathcal{N} \)
MILCP–PBB Scheme

Input: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$, $I \subseteq \{1, \ldots, n\}$, $\alpha \in (0, 1)$

Output: A global optimum z^* of Problem (NC$_{ref}$)

Set $\mathcal{N} \leftarrow \{(\emptyset, \emptyset)\}$, $f_{inc} \leftarrow \infty$, $z_{inc}^* \leftarrow \text{none}$

while $\mathcal{N} \neq \emptyset$ do

Choose $N = (I_0, I_1) \in \mathcal{N}$

Set $\mathcal{N} \leftarrow \mathcal{N} \setminus \{N\}$

Compute $z_N^* \in \text{argmin}\{f_N(z) : q + Mz \geq 0, z \in [0, 1]^n\}$

if $f(N)(z_N^*) < f_{inc}$ then

Set $z_{inc}^* \leftarrow z_N^*$, $f_{inc} \leftarrow f(N)(z_N^*)$

end if

if $f_N(z_N^*) < f_{inc}$ and $I \setminus (I_0 \cup I_1) \neq \emptyset$ then

Choose $j \in I \setminus (I_0 \cup I_1)$

Set $\mathcal{N} \leftarrow \mathcal{N} \cup \{(I_0 \cup \{j\}, I_1), (I_0, I_1 \cup \{j\})\}$

end if

end while

return z_{inc}^*
MILCP–PBB Scheme

Input: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$, $I \subseteq \{1, \ldots, n\}$, $\alpha \in (0, 1)$

Output: A global optimum z^* of Problem (NC_{ref})

Set $\mathcal{N} \leftarrow \{ (\emptyset, \emptyset) \}$, $f_{\text{inc}} \leftarrow \infty$, $z_{\text{inc}}^* \leftarrow \text{none}$

while $\mathcal{N} \neq \emptyset$ **do**

Choose $N = (I_0, I_1) \in \mathcal{N}$

Set $\mathcal{N} \leftarrow \mathcal{N} \setminus \{N\}$

Compute $z_N^* \in \arg \min \{ f_N(z) : q + Mz \geq 0, z \in [0, 1]^n \}$

if $f(z_N^*) < f_{\text{inc}}$ **then**

Set $z_{\text{inc}}^* \leftarrow z_N^*$, $f_{\text{inc}} \leftarrow f(z_N^*)$

end if

end while

return z_{inc}^*
MILCP–PBB Scheme

Input: \(q \in \mathbb{R}^n, M \in \mathbb{R}^{n \times n}, I \subseteq \{1, \ldots, n\}, \alpha \in (0, 1) \)

Output: A global optimum \(z^* \) of Problem \((\text{NC}_{\text{ref}})\)

Set \(\mathcal{N} \leftarrow \{ (\emptyset, \emptyset) \} \), \(f_{\text{inc}} \leftarrow \infty \), \(z_{\text{inc}} \leftarrow \text{none} \)

while \(\mathcal{N} \neq \emptyset \) do

Choose \(N = (I_0, I_1) \in \mathcal{N} \)

Set \(\mathcal{N} \leftarrow \mathcal{N} \setminus \{N\} \)

Compute \(z^*_N \in \text{argmin} \{ f_N(z) : q + Mz \geq 0, z \in [0, 1]^n \} \)

if \(f(z^*_N) < f_{\text{inc}} \) then

Set \(z_{\text{inc}} \leftarrow z^*_N \), \(f_{\text{inc}} \leftarrow f(z^*_N) \)

end if

if \(f_N(z^*_N) < f_{\text{inc}} \) and \(I \setminus (I_0 \cup I_1) \neq \emptyset \) then
MILCP–PBB Scheme

Input: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$, $I \subseteq \{1, \ldots, n\}$, $\alpha \in (0, 1)$

Output: A global optimum z^* of Problem (NC$_{\text{ref}}$)

Set $\mathcal{N} \leftarrow \{ (\emptyset, \emptyset) \}$, $f_{\text{inc}} \leftarrow \infty$, $z_{\text{inc}} \leftarrow \text{none}$

while $\mathcal{N} \neq \emptyset$ **do**

Choose $N = (I_0, I_1) \in \mathcal{N}$

Set $\mathcal{N} \leftarrow \mathcal{N} \setminus \{N\}$

Compute $z^*_N \in \text{argmin}\{f_N(z) : q + Mz \geq 0, \ z \in [0, 1]^n\}$

if $f(z^*_N) < f_{\text{inc}}$ **then**

Set $z_{\text{inc}} \leftarrow z^*_N$, $f_{\text{inc}} \leftarrow f(z^*_N)$

end if

if $f_N(z^*_N) < f_{\text{inc}} \text{ and } I \setminus (I_0 \cup I_1) \neq \emptyset$ **then**

Choose $j \in I \setminus (I_0 \cup I_1)$

Set $\mathcal{N} \leftarrow \mathcal{N} \cup \{ (I_0 \cup \{j\}, I_1), (I_0, I_1 \cup \{j\}) \}$

end if

return z_{inc}
MILCP–PBB Scheme

Input: \(q \in \mathbb{R}^n, \ M \in \mathbb{R}^{n \times n}, \ I \subseteq \{1, \ldots, n\}, \ \alpha \in (0, 1) \)

Output: A global optimum \(z^* \) of Problem (NC_{ref})

Set \(\mathcal{N} \leftarrow \{ (\emptyset, \emptyset) \} \), \(f_{\text{inc}} \leftarrow \infty \), \(z_{\text{inc}} \leftarrow \text{none} \)

while \(\mathcal{N} \neq \emptyset \) do

Choose \(N = (I_0, I_1) \in \mathcal{N} \)

Set \(\mathcal{N} \leftarrow \mathcal{N} \setminus \{ N \} \)

Compute \(z_{N}^* \in \text{argmin}\{ f_N(z) : q + Mz \geq 0, \ z \in [0, 1]^n \} \)

if \(f(z_{N}^*) < f_{\text{inc}} \) then

Set \(z_{\text{inc}} \leftarrow z_{N}^*, \ f_{\text{inc}} \leftarrow f(z_{N}^*) \)

end if

if \(f_N(z_{N}^*) < f_{\text{inc}} \) and \(I \setminus (I_0 \cup I_1) \neq \emptyset \) then

Choose \(j \in I \setminus (I_0 \cup I_1) \)

Set \(\mathcal{N} \leftarrow \mathcal{N} \cup \{ (I_0 \cup \{ j \}, I_1), (I_0, I_1 \cup \{ j \}) \} \)

end if

end while

return \(z_{\text{inc}} \)
MILCP–PBB Scheme

Input: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$, $I \subseteq \{1, \ldots, n\}$, $\alpha \in (0, 1)$

Output: A global optimum z^* of Problem (NC$_{\text{ref}}$)

Set $\mathcal{N} \leftarrow \{() \}$, $f_{\text{inc}} \leftarrow \infty$, $z_{\text{inc}} \leftarrow \text{none}$

while $\mathcal{N} \neq \emptyset$ **do**

Choose $N = (I_0, I_1) \in \mathcal{N}$

Set $\mathcal{N} \leftarrow \mathcal{N} \setminus \{N\}$

Compute $z_N^* \in \arg\min \{f_N(z) : q + Mz \geq 0, z \in [0, 1]^n\}$

if $f(z_N^*) < f_{\text{inc}}$ **then**

Set $z_{\text{inc}} \leftarrow z_N^*$, $f_{\text{inc}} \leftarrow f(z_N^*)$

end if

if $f_N(z_N^*) < f_{\text{inc}}$ **and** $I \setminus (I_0 \cup I_1) \neq \emptyset$ **then**

Choose $j \in I \setminus (I_0 \cup I_1)$

Set $\mathcal{N} \leftarrow \mathcal{N} \cup \{(I_0 \cup \{j\}, I_1), (I_0, I_1 \cup \{j\})\}$

end if

end while

return z_{inc}^*
Finite termination

Theorem

Algorithm MILCP–PBB terminates after finitely many steps with a global optimal solution of Problem \(\text{NC}_{\text{ref}} \).
Finite termination

Theorem

Algorithm MILCP–PBB terminates after finitely many steps with a global optimal solution of Problem \((\text{NC}_{\text{ref}})\).

Remark

Note that in our branch-and-bound method, there is no direct analogy to pruning due to infeasibility.

In case at a node we find a feasible solution for the MILCP we stop the algorithm.
Adding simple cuts

Within the node subproblem we include simple bound constraints:

$$\begin{align*}
\min \quad & f_N(z) \\
\text{s.t.} \quad & q + Mz \geq 0 \\
& z \in [0, 1]^n \\
& z_j \leq 0.5 \quad \text{if } j \in I_0 \\
& z_j \geq 0.5 \quad \text{if } j \in I_1
\end{align*}$$

Lemma

Let z^*_N be an optimal solution at node N when simple cuts are included. Then,

$$f_N(z^*_N) = \min \left\{ f_N(z^*_N) : N = (I_0, I_1) \text{ with } I_0 \cup I_1 = I \right\}$$
Adding simple cuts

Within the node subproblem we include simple bound constraints:

\[
\begin{align*}
\min & \quad f_N(z) \\
\text{s.t.} & \quad q + Mz \geq 0 \\
& \quad z \in [0, 1]^n \\
& \quad z_j \leq 0.5 \quad \text{if } j \in l_0 \\
& \quad z_j \geq 0.5 \quad \text{if } j \in l_1
\end{align*}
\]

Lemma

Let \(z^*_N \) be an optimal solution at node \(N \) when simple cuts are included. Then,

\[
f(z^*) = \min \{ f_N(z^*_N) : N = (l_0, l_1) \text{ with } l_0 \cup l_1 = l \}
\]
Adding simple cuts
finite termination

Lemma
Let $N' = (I_0', I_1')$ be a successor of some node $N = (I_0, I_1)$ in the branching tree, i.e., $I_0 \subseteq I_0'$ and $I_1 \subseteq I_1'$ holds. Further, let $z_N^*, z_{N'}^*$ be optimal solutions of nodes N and N', respectively, when simple cuts are used. Then,

$$f_N(z_N^*) \leq f_{N'}(z_{N'}^*)$$

holds.

Theorem
Algorithm MILCP−PBB remains correct when simple cuts

$$z_j \leq 0.5 \text{ for all } j \in I_0, \quad z_j \geq 0.5 \text{ for all } j \in I_1$$

are added at any node $N = (I_0, I_1)$.
Numerical results
Randomly generated instances

We built matrices $M \in \mathbb{R}^{n \times n}$ with $n \in \{50, 100, 150, 200, 250, 300, 350, 400, 450, 500\}$.

We then built vectors $q \in \mathbb{R}^n$ in four different ways, each reflecting a certain "degree of feasibility" in the resulting instance. More precisely, we built instances for which $z \in \mathbb{R}^n$ exists so that

(a) only $q + Mz \geq 0$, $z \geq 0$ are guaranteed to be satisfied,

(b) only $q + Mz \geq 0$, $z \geq 0$ and $z_i \in \{0, 1\}$, $i \in I$ are guaranteed to be satisfied,

(c) only $q + Mz \geq 0$, $z \geq 0$ and complementarity $(z^* \top (q + Mz^*)) = 0)$ are guaranteed to be satisfied.

We created 10 instances for every size n and the types (a)–(c), yielding 300 different instances in total.
Numerical results
Randomly generated instances

We built matrices $M \in \mathbb{R}^{n \times n}$ with $n \in \{50, 100, 150, 200, 250, 300, 350, 400, 450, 500\}$.

We then built vectors $q \in \mathbb{R}^n$ in four different ways, each reflecting a certain “degree of feasibility” in the resulting instance.
Numerical results
Randomly generated instances

We built matrices $M \in \mathbb{R}^{n \times n}$ with $n \in \{50, 100, 150, 200, 250, 300, 350, 400, 450, 500\}$.

We then built vectors $q \in \mathbb{R}^n$ in four different ways, each reflecting a certain “degree of feasibility” in the resulting instance.

More precisely, we built instances for which $z \in \mathbb{R}^n$ exists so that

(a) only $q + Mz \geq 0$, $z \geq 0$ are guaranteed to be satisfied,

We created 10 instances for every size n and the types (a)–(c), yielding 300 different instances in total.
Numerical results
Randomly generated instances

We built matrices $M \in \mathbb{R}^{n \times n}$ with $n \in \{50, 100, 150, 200, 250, 300, 350, 400, 450, 500\}$.

We then built vectors $q \in \mathbb{R}^n$ in four different ways, each reflecting a certain “degree of feasibility” in the resulting instance.

More precisely, we built instances for which $z \in \mathbb{R}^n$ exists so that

(a) only $q + Mz \geq 0$, $z \geq 0$ are guaranteed to be satisfied,

(b) only $q + Mz \geq 0$, $z \geq 0$ and $z_i \in \{0, 1\}$, $i \in I$ are guaranteed to be satisfied,
Numerical results
Randomly generated instances

We built matrices $M \in \mathbb{R}^{n \times n}$ with $n \in \{50, 100, 150, 200, 250, 300, 350, 400, 450, 500\}$.

We then built vectors $q \in \mathbb{R}^n$ in four different ways, each reflecting a certain “degree of feasibility” in the resulting instance.

More precisely, we built instances for which $z \in \mathbb{R}^n$ exists so that

(a) only $q + Mz \geq 0$, $z \geq 0$ are guaranteed to be satisfied,

(b) only $q + Mz \geq 0$, $z \geq 0$ and $z_i \in \{0, 1\}$, $i \in I$ are guaranteed to be satisfied,

(c) only $q + Mz \geq 0$, $z \geq 0$ and complementarity $(z^* \top (q + Mz^*) = 0)$ are guaranteed to be satisfied,
Numerical results
Randomly generated instances

We built matrices $M \in \mathbb{R}^{n \times n}$ with $n \in \{50, 100, 150, 200, 250, 300, 350, 400, 450, 500\}$.

We then built vectors $q \in \mathbb{R}^n$ in four different ways, each reflecting a certain “degree of feasibility” in the resulting instance.

More precisely, we built instances for which $z \in \mathbb{R}^n$ exists so that

(a) only $q + Mz \geq 0$, $z \geq 0$ are guaranteed to be satisfied,

(b) only $q + Mz \geq 0$, $z \geq 0$ and $z_i \in \{0, 1\}$, $i \in I$ are guaranteed to be satisfied,

(c) only $q + Mz \geq 0$, $z \geq 0$ and complementarity $(z^\star \top (q + Mz^\star) = 0)$ are guaranteed to be satisfied,

We created 10 instances for every size n and the types (a)–(c), yielding 300 different instances in total.
Numerical results on the use of simple cuts

Performance Profiles

Figure: Performance profiles: number of nodes (left), running time (right)
Numerical comparison on branching rules

Performance Profiles

Figure: Performance profiles: number of nodes (left), running time (right)
MIQP-based branching rule

We presolve single-binary-variable MIQPs, one for each z_j, $j \in I$:

\[
\begin{align*}
\min_{z \in \mathbb{R}^n} & \quad z^T (q + Mz) \\
\text{s.t.} & \quad q + Mz \geq 0, \; z \geq 0, \\
& \quad z_j \in \{0, 1\}.
\end{align*}
\]

measuring the impact of the j-th variable on the infeasibility of the problem
MIQP-based branching rule

We presolve single-binary-variable MIQPs, one for each z_j, $j \in I$:

$$\begin{align*}
\min_{z \in \mathbb{R}^n} & \quad z^T (q + Mz) \\
\text{s.t.} & \quad q + Mz \geq 0, \ z \geq 0, \\
& \quad z_j \in \{0, 1\}.
\end{align*}$$

measuring the impact of the j-th variable on the infeasibility of the problem

We sort the indices $j \in I$ in decreasing order with respect to the optimal objective function values
Comparison with other approaches
An MILP reformulation, with additional binary variables and big-M constraints

[Gabriel, Conejo, Ruiz, Siddiqui; 2013]

\[
\begin{align*}
\min_{z,z',z'',\rho,\sigma} & \quad \alpha \sum_{i=1}^{n} \rho_i + (1 - \alpha) \sum_{i \in I} \sigma_i \\
\text{s.t.} & \quad z \geq 0, \quad q + Mz \geq 0, \quad (2a) \\
& \quad z \leq Bz' + \rho, \quad (2b) \\
& \quad q + Mz \leq B(1 - z') + \rho, \quad (2c) \\
& \quad 0 \leq z_l \leq z'' + \sigma, \quad (2d) \\
& \quad z'' - \sigma \leq z_l \leq 1, \quad (2e) \\
& \quad z \in \mathbb{R}^n, \quad z' \in \{0,1\}^n, \quad z'' \in \{0,1\}^I, \quad (2f) \\
& \quad \sigma \in \mathbb{R}_{\geq 0}^I, \quad \rho \in \mathbb{R}_{\geq 0}^n. \quad (2g) \\
\end{align*}
\]

variables: \(3n + 2|I|, \quad (n + |I| \text{ constrained to be binary})\)
Comparison with other approaches

An MIQP reformulation, no big-M constraints

\[
\begin{align*}
\min_{z, z', \sigma} & \quad \alpha z^\top (q + Mz) + (1 - \alpha) \sum_{i \in I} \sigma_i \\
\text{s.t.} & \quad z \geq 0, \quad q + Mz \geq 0, \\
& \quad 0 \leq z_I \leq z' + \sigma, \\
& \quad z' - \sigma \leq z_I \leq 1, \\
& \quad z \in \mathbb{R}^n, \quad z' \in \{0, 1\}^l, \\
& \quad \sigma \in \mathbb{R}_{\geq 0}^l.
\end{align*}
\]

\# variables: $n + 2|I|$, ($|I|$ constrained to be binary)
Comparison with Gurobi addressing the MILP and the MIQP reformulations

Figure: Performance profiles: number of nodes (left), running time (right)
Comparison with GUROBI addressing the MIQP

Harder test set (300 instances with $n = 100, \ldots, 600$)

Figure: Performance profiles: number of nodes (left), running time (right)
Conclusions

We presented a **penalty branch-and-bound method** for MILCPs

- the method is able to compute a solution *if one exists* or it computes an approximate solution that minimizes an infeasibility measure based on the violation of the integrality and complementarity conditions of the problem

- the objective function slightly changes along the nodes so that the penalization of the integrality constraint violation is progressively increased
Future work

...useful for MILPs?

Under specific assumption on $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ we can prove that $\epsilon > 0$ exists such that

$$\min c^\top x \quad \iff \quad \min c^\top x + \frac{1}{\epsilon} \sum_{i \in I} \min \{x_i, 1 - x_i\}$$

s.t. $Ax \leq b$

$x_i \in \{0, 1\}, \quad i \in I$

s.t. $Ax \leq b$

$x \in [0, 1]^n$
Future work

...useful for MILPs?

Under specific assumption on $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ we can prove that $\epsilon > 0$ exists such that

$$\min c^\top x \quad \text{s.t.} \quad Ax \leq b \quad \iff \quad \min c^\top x + \frac{1}{\epsilon} \sum_{i \in I} \min\{x_i, 1 - x_i\} \quad \text{s.t.} \quad Ax \leq b$$

$x_i \in \{0, 1\}, \quad i \in I$

we can use our branch-and-bound framework to solve the nonconvex nonsmooth reformulation of MILPs!
Future work

...useful for MILPs?

Under specific assumption on \(P = \{ x \in \mathbb{R}^n : Ax \leq b \} \) we can prove that \(\epsilon > 0 \) exists such that

\[
\begin{align*}
\min & \quad c^\top x \\
\text{s.t.} & \quad Ax \leq b \\
& \quad x_i \in \{0, 1\}, \quad i \in I
\end{align*}
\]

\[
\begin{align*}
\leftrightarrow
\min & \quad c^\top x + \frac{1}{\epsilon} \sum_{i \in I} \min\{x_i, 1 - x_i\} \\
\text{s.t.} & \quad Ax \leq b \\
& \quad x \in [0, 1]^n
\end{align*}
\]

we can use our branch-and-bound framework to solve the nonconvex nonsmooth reformulation of MILPs!

Thanks for your attention!