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Mixed-Binary Linear Complementarity Problems

The mixed-binary linear complementarity problem (MILCP) is the
task to find a vector z € R” that satisfies

z>0
g+ Mz=>0
z'(g+Mz)=0
zie{0,1} foriel C{1,...,n}
or to show that no such vector exists, for given

e MeR™" M*0
°* geR"



Application context

Linear Complementarity Problems (LCPs) are an important tool for
the modeling and analysis of equilibrium problems in economics,
mechanics, ... [Cottle, Pang, Stone; “The Linear Complementarity
Problem™; 2009]

[Gabriel, Conejo, Fuller, Hobbs; “Complementarity modeling in
energy markets”; 2012]

When a subset of variables is restricted to take integer values, i.e.,
zj € Z for a given index set | C {1,..., n} we fall in the context of
MILCPs
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Linear Complementarity Problems
QP reformulation

A common tool in the analysis and resolution of a Linear

Complementarity Problem (LCP) is its reformulation as Quadratic
Problem (QP) [Cottle et al.;2009]:

z>0 min z'(q+ Mz)
g+ Mz >0 st. ¢g+Mz>0
z'(g+ Mz)=0 z>0

u}
‘ o)
I
i
it



Linear Complementarity Problems

QP reformulation
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MIQP reformulation of a MILCP

Equivalently we can reformulate a MILCP into a MIQP:

z>0 min z'(q+ Mz)
g+ Mz>0 st. g+Mz>0
zT(qg+ Mz)=0 A z>0
z€{0,1}, iel z€{0,1}, i el

MILCP has a solution if and only if the MIQP
has an optimal solution with objective function value zero

However, the existence of a solution of the MILCP cannot
be expected in general...



...look for “approximate feasible solutions”

For practically relevant instances where non-existence occurs, one
is interested in “approximate feasible solutions”:

points that minimize a certain infeasibility measure that combines
both the violation of integrality conditions as well as of
complementarity constraints



Penalizing the violation of complementarity and integrality

min  aPc(z) + (1 — a) Pi(2)
st. g+ Mz>0
z>0
z<1l, i€l
where
°* ae|0,1]

® Pc(z) is a function penalizing the violation of the
complementarity constraints

® Pi(z) is a function penalizing the violation of the integrality
constraints

[Raghavachari;1969], [Giannessi, Tardella; 1998], [Zhu; 2003],
[Lucidi, Rinaldi; 2010], [De Santis, Lucidi, Rinaldi; 2013]
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A nonconvex, nonsmooth reformulation of MILCP

min az'(q+ Mz)+ (1 —a)> ., min{z,1-z}

st. g+Mz>0
2>0 (NCrer)
z<1l, i€l

where
°* ae|0,1]
* Pc(z) =z"(q+ Mz)
® Pi(z) =iy min{z,1 -z}

P;(z) is concave and piecewise linear



Features of the penalty branch-and-bound method

In order to globally solve problem NC,.s, we address a sequence
of convex quadratic smooth problems that
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In order to globally solve problem NC,.s, we address a sequence
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Features of the penalty branch-and-bound method

In order to globally solve problem NC,.s, we address a sequence
of convex quadratic smooth problems that

® share the same feasible set

® progressively increase the penalization of the integrality
constraint violation

the objective function slightly changes along the iterations!



Problem at the root node

At the root node of the branch-and-bound tree, we solve the
convex smooth problem
min az'(q+ Mz)
st. g+Mz>0
z>0
zi<1l, i€l

obtained from Problem (NC,.f) by neglecting the second term
in the objective function



Branching

Let z* be the solution of the root node relaxation
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Branching

Let z* be the solution of the root node relaxation

Choose an index j € [ such that min{z/,1 -z} >0
and build two children nodes:
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Branching
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Branching

Let z* be the solution of the root node relaxation

Choose an index j € [ such that min{z/,1 -z} >0
and build two children nodes:

min{z’,1 -2z} >0

O
YRR
add (1 -a)z; O O add (1 —a)(1 - z)
min az'(qg+ Mz)+ (1 —a)z min az'(qg+ Mz)+ (1 —a)(l - z)
st. g+Mz>0 st. g+Mz>0
z>0, z<1, i€l z>0, z<1, i€l
--+ aims to drive z; to 0 --+ aims to drive z; to 1
in the respective subtree in the respective subtree



Problem at the node N = (o, h)

A node N = (lp, I) is identified by two sets of indices:
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Problem at the node N = (o, h)
A node N = (lo, 1) is identified by two sets of indices:

® Jo: set of indices j € | for which (1 — a)z; is added
® /;: set of indices j € I for which (1 — «)(1 — z) is added

The subproblem at node N = (ly, h) is

min  fy(2)

st. g+Mz>0
z>0
z<1l, i€l

with

fu(z) = az' (g + Mz) + (1 — «) sz—{—Zl—zJ

J€h JE€h



Enumerating the partitions (o, h) of I C {1,...,n}

The minimum among the optimal solutions of the problems of all
leaf nodes of the fully enumerated branch-and-bound tree is the
optimal solution of Problem (NC,f):

Let z* be an optimal solution of Problem (NC,ef) and zj, the
solution at the node N = (lp, l). Then,

f(Z*) = min {fN(ZK,): N = (Io, /1) with yUlh =1 and Nl = @}




Bounding and Pruning

The optimal value fy(zy) of the problem defined at a node N is a
local lower bound for the subtree rooted in N:

Let N" = (1§, 1) be a successor of N = (ly, 1), i.e., Iy C I and
I C 1. Then,

fN(Z;\(/) S fN’(ZKI')
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every leaf of the subtree rooted in N cannot yield a better solution

than the best known solution z



Bounding and Pruning

The optimal value fy(zy) of the problem defined at a node N is a
local lower bound for the subtree rooted in N:

Let N" = (1§, 1) be a successor of N = (ly, 1), i.e., Iy C I and
I C 1. Then,

fN(ZK/) S fN’(ZKI')

|

If zy, is such that fy(zy) > f(z5.)

inc

every leaf of the subtree rooted in N cannot yield a better solution

than the best known solution z

and we can prune the subtree rooted in N
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MILCP-PBB Scheme

Input: g€ R", M e R"™", | C{1,...,n}, a €(0,1)
Output: A global optimum z* of Problem (NC,efr)
Set N < {(0,0)}, finc < 00, z& . < none
while N # () do
Choose N = (lp, h) € N
Set N+~ N\ {N}
Compute z3, € argmin{fy(z) : g+ Mz >0, z € [0,1]"}
if f(zy) < finc then
Set z& <z, finc  f(25)
end if
if fn(z) < finc and 1\ (lp U l) # 0 then
Choose j € '\ (b U h)
Set N AU {(lo U {j}, k), (o, U 1)}
end if
end while

*
return z




Finite termination

Algorithm MILCP-PBB terminates after finitely many steps with a
global optimal solution of Problem (NC,f).




Finite termination

Algorithm MILCP-PBB terminates after finitely many steps with a
global optimal solution of Problem (NC,f).

Note that in our branch-and-bound method, there is no direct
analogy to pruning due to infeasibility.

In case at a node we find a feasible solution for the MILCP we stop
the algorithm




Adding simple cuts
Within the node subproblem we include simple bound constraints:

min  fy(z)

st. g+Mz>0

ze[0,1]"
z <05 ifjel
z;>05 ifjeh
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Adding simple cuts
Within the node subproblem we include simple bound constraints:

min  fy(z)

st. g+Mz>0
ze[0,1]"
z <05 ifjel
z;>05 ifjeh

Let zy, be an optimal solution at node N when simple cuts are
included. Then,

f(z*) = min{fy(zy): N = (lo, h) with b UL = 1}




Adding simple cuts

finite termination

Lemma

Let N = (I§,1{) be a successor of some node N = (lp, I) in the
branching tree, i.e., Iy C Iy and Iy C I{ holds. Further, let zy;, zy,
be optimal solutions of nodes N and N', respectively, when simple
cuts are used. Then,

fN(ZKI) S fN’(ZKI')

holds.

Theorem
Algorithm MILCP-PBB remains correct when simple cuts

| A

zi <05 foralljely, z >05foralljch

are added at any node N = (I, I1).

y
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Numerical results

Randomly generated instances

We built matrices M € R"™" with
n € {50,100, 150, 200, 250, 300, 350, 400, 450, 500}.

We then built vectors g € R" in four different ways, each reflecting
a certain “degree of feasibility” in the resulting instance.

More precisely, we built instances for which z € R" exists so that
(a) only g+ Mz >0, z > 0 are guaranteed to be satisfied,

(b) only g4+ Mz >0, z> 0 and z € {0,1}, i € | are guaranteed
to be satisfied,

(c) only g+ Mz >0, z > 0 and complementarity
(z*T(q + Mz*) = 0) are guaranteed to be satisfied,

We created 10 instances for every size n and the types (a)—(c),
yielding 300 different instances in total.



Numerical results on the use of simple cuts

Performance Profiles
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Numerical comparison on branching rules

Performance Profiles
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MIQP-based branching rule

We presolve single-binary-variable MIQPs, one for each z;, j € I:
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problem



MIQP-based branching rule

We presolve single-binary-variable MIQPs, one for each z;, j € I:

- T
M 1
min  z'(q+ Mz) (1a)
st. g+Mz>0, z>0, (1b)
zj € {0,1}. (1c)

measuring the impact of the j-th variable on the infeasibility of the
problem

We sort the indices j € | in decreasing order with respect to the
optimal objective function values



Comparison with other approaches

An MILP reformulation, with additional binary variables and big-M constraints

[Gabriel, Conejo, Ruiz, Siddiqui; 2013]

min aZp;—i—(l—a)Za; (2a)
i=1

1 1
z7z ?z ’p’o-

icl

st. z>0, g+ Mz>0, (2b)
z < BZ + p, (2¢)

g+ Mz<B(1-2)+p, (2d)
0<z <Z"+o0, (2e)
-0 <z <1, (2f)
zeR", Ze{0,1}", Z'e{0,1}, (2)
oceRLy, peRL,. (2h)

# variables: 3n+2|/|, (n+ |l| constrained to be binary)



Comparison with other approaches
An MIQP reformulation, no big-M constraints

min az'(g+ Mz)+ (1 - ) Za,- (3a)
e icl

st. z>0, g+ Mz>0, (3b)

0<z <7 +o, (3¢)

Z—0<z <1, (3d)

zeR", Ze{0,1}, (3e)

o € RL,. (3f)

# variables: n+2|l|, (|| constrained to be binary)
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Comparison with GUROBI addressing the MILP and the
MIQP reformulations
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Comparison with GUROBI addressing the MIQP
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Conclusions

We presented a penalty branch-and-bound method for MILCPs

® the method is able to compute a solution if one exists or it
computes an approximate solution that minimizes an
infeasibility measure based on the violation of the integrality
and complementarity conditions of the problem

® the objective function slightly changes along the nodes so that
the penalization of the integrality constraint violation is
progressively increased



Future work

...useful for MILPs?

Under specific assumption on P = {x € R" : Ax < b} we can
prove that € > 0 exists such that
min

c'x min
st. Ax<b @ s.t.
x; €{0,1}, i€l

c'x+ % Y icy min{x;, 1 — x;}
Ax < b

x €10,1]"
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Future work
...useful for MILPs?

Under specific assumption on P = {x € R" : Ax < b} we can
prove that € > 0 exists such that

min  c'x min ¢’ x+ 13, min{x,1—x}
st. Ax<b @ st. Ax<b
xi€{0,1}, iel x €[0,1]"

@ we can use our branch-and-bound framework to solve the
nonconvex nonsmooth reformulation of MILPs!

Thanks for your attention!



