Sequential penalty methods for mixed integer programs

Marianna De Santis¹ Martin Schmidt² Lukas Winkel²

Sven de Vries²

¹Department of Computer, Control, and Management Engineering,

Sapienza University of Rome, Italy

²Department of Mathematics, Trier University, Germany

Universität Trier

MIP 2022

Mixed-Binary Linear Complementarity Problems

The mixed-binary linear complementarity problem (MILCP) is the task to find a vector $z \in \mathbb{R}^n$ that satisfies

$$egin{aligned} &z \geq 0 & & \ &q+Mz \geq 0 & & \ &z^ op(q+Mz) = 0 & & \ &z_i \in \{0,1\} & & ext{for } i \in I \subseteq \{1,\ldots,n\} \end{aligned}$$

or to show that no such vector exists, for given

•
$$M \in \mathbb{R}^{n \times n}$$
, $M \succeq 0$

•
$$q \in \mathbb{R}^n$$

Application context

Linear Complementarity Problems (LCPs) are an important tool for the modeling and analysis of equilibrium problems in economics, mechanics, ... [Cottle, Pang, Stone; "The Linear Complementarity Problem"; 2009] [Gabriel, Conejo, Fuller, Hobbs; "Complementarity modeling in energy markets"; 2012]

When a subset of variables is restricted to take integer values, i.e., $z_i \in \mathbb{Z}$ for a given index set $I \subseteq \{1, ..., n\}$ we fall in the context of MILCPs

イロト 不同 トイヨト イヨト ヨー つくつ

Linear Complementarity Problems QP reformulation

A common tool in the analysis and resolution of a Linear Complementarity Problem (LCP) is its reformulation as Quadratic Problem (QP) [Cottle et al.;2009]:

$z \ge 0$	min	$z^{ op}(q+Mz)$
$q + Mz \ge 0$	s.t.	$q + Mz \ge 0$
$z^{\top}(q + Mz) = 0$		$z \ge 0$

イロト 不得下 イヨト イヨト 二日

Linear Complementarity Problems QP reformulation

A common tool in the analysis and resolution of a Linear Complementarity Problem (LCP) is its reformulation as Quadratic Problem (QP) [Cottle et al.;2009]:

$$z \ge 0$$

 $q + Mz \ge 0$
 $z^{\top}(q + Mz) = 0$
 $min \quad z^{\top}(q + Mz)$
 $s.t. \quad q + Mz \ge 0$
 $z \ge 0$

LCP has a solution if and only if the QP has an optimal solution with objective function value zero

MIQP reformulation of a MILCP

Equivalently we can reformulate a MILCP into a MIQP:

MILCP has a solution if and only if the MIQP has an optimal solution with objective function value zero

イロト 不得下 イヨト イヨト 二日

MIQP reformulation of a MILCP

Equivalently we can reformulate a MILCP into a MIQP:

MILCP has a solution if and only if the MIQP has an optimal solution with objective function value zero

However, the existence of a solution of the MILCP cannot be expected in general...

...look for "approximate feasible solutions"

For practically relevant instances where non-existence occurs, one is interested in **"approximate feasible solutions"**:

points that minimize a certain infeasibility measure that combines both the violation of integrality conditions as well as of complementarity constraints

(4回) (4回) (4回) (日)

Penalizing the violation of complementarity and integrality

$$\begin{array}{ll} \min & \alpha \, P_C(z) + (1 - \alpha) \, P_I(z) \\ \text{s.t.} & q + Mz \geq 0 \\ & z \geq 0 \\ & z_i \leq 1, \quad i \in I \end{array}$$

where

- $\alpha \in [0,1]$
- *P_C(z)* is a function penalizing the violation of the complementarity constraints
- $P_I(z)$ is a function penalizing the violation of the integrality constraints

[Raghavachari;1969], [Giannessi, Tardella; 1998], [Zhu; 2003], [Lucidi, Rinaldi; 2010], [De Santis, Lucidi, Rinaldi; 2013] A nonconvex, nonsmooth reformulation of MILCP

$$\begin{array}{ll} \min & \alpha \, z^{\top} \left(q + M z \right) + (1 - \alpha) \sum_{i \in I} \min\{z_i, 1 - z_i\} \\ \text{s.t.} & q + M z \geq 0 \\ & z \geq 0 \\ & z_i \leq 1, \quad i \in I \end{array}$$
 (NC_{ref})

where

• $\alpha \in [0, 1]$

•
$$P_C(z) = z^\top (q + Mz)$$

• $P_I(z) = \sum_{i \in I} \min\{z_i, 1 - z_i\}$

 $P_I(z)$ is concave and piecewise linear

In order to globally solve problem NC_{ref} , we address a sequence of convex quadratic smooth problems that

In order to globally solve problem NC_{ref} , we address a sequence of convex quadratic smooth problems that

share the same feasible set

・ 同 ト ・ ヨ ト ・ ヨ ト

In order to globally solve problem NC_{ref} , we address a sequence of convex quadratic smooth problems that

- share the same feasible set
- progressively increase the penalization of the integrality constraint violation

(日本) (日本) (日本)

In order to globally solve problem NC_{ref} , we address a sequence of convex quadratic smooth problems that

- share the same feasible set
- progressively increase the penalization of the integrality constraint violation

the objective function slightly changes along the iterations!

Problem at the root node

At the **root node** of the branch-and-bound tree, we solve the convex smooth problem

min
$$\alpha z^{\top}(q + Mz)$$

s.t. $q + Mz \ge 0$
 $z \ge 0$
 $z_i \le 1, i \in I$

obtained from Problem (NC_{ref}) by neglecting the second term in the objective function

イロト イヨト イヨト イヨト 二日

Let z^* be the solution of the root node relaxation

Let z^* be the solution of the root node relaxation

Choose an index $j \in I$ such that $\min\{z_j^*, 1 - z_j^*\} > 0$ and **build two children nodes**:

Let z^* be the solution of the root node relaxation

Choose an index $j \in I$ such that $\min\{z_j^*, 1 - z_j^*\} > 0$ and **build two children nodes**:

$$\min\{z_j^*, 1 - z_j^*\} > 0$$

$$\bigcirc$$
add $(1 - \alpha)z_j \bigcirc$ add $(1 - \alpha)(1 - z_j)$

<ロト < 回 ト < 三 ト < 三 ト - 三</p>

Let z^* be the solution of the root node relaxation

Choose an index $j \in I$ such that $\min\{z_j^*, 1 - z_j^*\} > 0$ and **build two children nodes**:

$$\begin{array}{c} \min\{z_j^*,1-z_j^*\}>0\\ \bigcirc\\ \text{add }(1-\alpha)z_j\bigcirc &\bigcirc \text{add }(1-\alpha)(1-z_j) \end{array}$$

min $\alpha z^{\top}(q + Mz) + (1 - \alpha)z_j$

s.t. $q + Mz \ge 0$

 $z \ge 0, \quad z_i \le 1, \quad i \in I$

--- \rightarrow aims to drive z_j to 0 in the respective subtree

<ロト < 回 ト < 三 ト < 三 ト - 三</p>

Let z^* be the solution of the root node relaxation

Choose an index $j \in I$ such that $\min\{z_j^*, 1 - z_j^*\} > 0$ and **build two children nodes**:

$$\min\{z_j^*, 1 - z_j^*\} > 0$$

$$\bigcirc$$
add $(1 - \alpha)z_j \bigcirc$ \bigcirc add $(1 - \alpha)(1 - z_j)$

min
$$lpha z^{ op}(q+Mz)+(1-lpha)z_j$$

s.t. $q + Mz \ge 0$ $z \ge 0, \quad z_i \le 1, \quad i \in I$

---> aims to drive z_j to 0 in the respective subtree

min
$$\alpha z^{\top}(q + Mz) + (1 - \alpha)(1 - z_j)$$

s.t. $q + Mz \ge 0$
 $z \ge 0, \quad z_i \le 1, \quad i \in I$

---- aims to drive z_j to 1 in the respective subtree

Problem at the node $N = (I_0, I_1)$

A node $N = (I_0, I_1)$ is identified by two sets of indices:

Problem at the node $N = (I_0, I_1)$

A node $N = (I_0, I_1)$ is identified by two sets of indices:

- I_0 : set of indices $j \in I$ for which $(1 \alpha)z_j$ is added
- I_1 : set of indices $j \in I$ for which $(1 \alpha)(1 z_j)$ is added

Problem at the node $N = (I_0, I_1)$

A node $N = (I_0, I_1)$ is identified by two sets of indices:

- I_0 : set of indices $j \in I$ for which $(1 \alpha)z_j$ is added
- I_1 : set of indices $j \in I$ for which $(1 \alpha)(1 z_j)$ is added

The subproblem at node $N = (I_0, I_1)$ is

min $f_N(z)$ s.t. $q + Mz \ge 0$ $z \ge 0$ $z_i \le 1, \quad i \in I$

with

$$f_{N}(z) = \alpha z^{\top}(q + Mz) + (1 - \alpha) \left(\sum_{j \in I_{0}} z_{j} + \sum_{j \in I_{1}} (1 - z_{j}) \right)$$

Enumerating the partitions (I_0, I_1) of $I \subseteq \{1, \ldots, n\}$

The minimum among the optimal solutions of the problems of **all** leaf nodes of the fully enumerated branch-and-bound tree is the optimal solution of Problem (NC_{ref}) :

Lemma

Let z^* be an optimal solution of Problem (NC_{ref}) and z_N^* the solution at the node $N = (I_0, I_1)$. Then,

 $f(z^*) = \min \{ f_N(z^*_N) \colon N = (I_0, I_1) \text{ with } I_0 \cup I_1 = I \text{ and } I_0 \cap I_1 = \emptyset \}$

イロト 不得 トイヨト イヨト 二日

Bounding and Pruning

The optimal value $f_N(z_N^*)$ of the problem defined at a node N is a local lower bound for the subtree rooted in N:

Lemma

Let $N' = (I'_0, I'_1)$ be a successor of $N = (I_0, I_1)$, i.e., $I_0 \subseteq I'_0$ and $I_1 \subseteq I'_1$. Then,

 $f_N(z_N^*) \leq f_{N'}(z_{N'}^*)$

イロト 不得 トイヨト イヨト 二日

Bounding and Pruning

The optimal value $f_N(z_N^*)$ of the problem defined at a node N is a local lower bound for the subtree rooted in N:

Lemma

Let $N' = (I'_0, I'_1)$ be a successor of $N = (I_0, I_1)$, i.e., $I_0 \subseteq I'_0$ and $I_1 \subseteq I'_1$. Then,

 $f_N(z_N^*) \leq f_{N'}(z_{N'}^*)$

If z_N^* is such that $f_N(z_N^*) \ge f(z_{inc}^*)$ every leaf of the subtree rooted in N cannot yield a better solution than the best known solution z_{inc}^*

Bounding and Pruning

The optimal value $f_N(z_N^*)$ of the problem defined at a node N is a local lower bound for the subtree rooted in N:

Lemma

Let $N' = (I'_0, I'_1)$ be a successor of $N = (I_0, I_1)$, i.e., $I_0 \subseteq I'_0$ and $I_1 \subseteq I'_1$. Then,

 $f_N(z_N^*) \leq f_{N'}(z_{N'}^*)$

If z_N^* is such that $f_N(z_N^*) \ge f(z_{\text{inc}}^*)$

every leaf of the subtree rooted in N cannot yield a better solution than the best known solution z_{inc}^*

and we can prune the subtree rooted in N

Input: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$, $I \subseteq \{1, ..., n\}$, $\alpha \in (0, 1)$ **Output:** A global optimum z^* of Problem (NC_{ref})

Input: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$, $I \subseteq \{1, ..., n\}$, $\alpha \in (0, 1)$ **Output:** A global optimum z^* of Problem (NC_{ref}) Set $\mathcal{N} \leftarrow \{(\emptyset, \emptyset)\}$, $f_{\text{inc}} \leftarrow \infty$, $z_{\text{inc}}^* \leftarrow$ none

Input: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$, $I \subseteq \{1, ..., n\}$, $\alpha \in (0, 1)$ **Output:** A global optimum z^* of Problem (NC_{ref}) Set $\mathcal{N} \leftarrow \{(\emptyset, \emptyset)\}$, $f_{inc} \leftarrow \infty$, $z_{inc}^* \leftarrow$ none **while** $\mathcal{N} \neq \emptyset$ **do**

Input: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$, $I \subseteq \{1, ..., n\}$, $\alpha \in (0, 1)$ Output: A global optimum z^* of Problem (NC_{ref}) Set $\mathcal{N} \leftarrow \{(\emptyset, \emptyset)\}$, $f_{inc} \leftarrow \infty$, $z_{inc}^* \leftarrow$ none while $\mathcal{N} \neq \emptyset$ do Choose $N = (I_0, I_1) \in \mathcal{N}$

Input: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$, $I \subseteq \{1, ..., n\}$, $\alpha \in (0, 1)$ Output: A global optimum z^* of Problem (NC_{ref}) Set $\mathcal{N} \leftarrow \{(\emptyset, \emptyset)\}$, $f_{inc} \leftarrow \infty$, $z_{inc}^* \leftarrow$ none while $\mathcal{N} \neq \emptyset$ do Choose $N = (I_0, I_1) \in \mathcal{N}$ Set $\mathcal{N} \leftarrow \mathcal{N} \setminus \{N\}$ Compute $z_N^* \in \operatorname{argmin}\{f_N(z) : q + Mz \ge 0, z \in [0, 1]^n\}$

イロト イロト イヨト イヨト 二日

Input: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$, $I \subseteq \{1, ..., n\}$, $\alpha \in (0, 1)$ Output: A global optimum z^* of Problem (NC_{ref}) Set $\mathcal{N} \leftarrow \{(\emptyset, \emptyset)\}$, $f_{inc} \leftarrow \infty$, $z_{inc}^* \leftarrow$ none while $\mathcal{N} \neq \emptyset$ do Choose $N = (I_0, I_1) \in \mathcal{N}$ Set $\mathcal{N} \leftarrow \mathcal{N} \setminus \{N\}$ Compute $z_N^* \in \operatorname{argmin}\{f_N(z) : q + Mz \ge 0, z \in [0, 1]^n\}$ if $f(z_N^*) < f_{inc}$ then Set $z_{inc}^* \leftarrow z_N^*$, $f_{inc} \leftarrow f(z_N^*)$ end if

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Input: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$, $I \subseteq \{1, \ldots, n\}$, $\alpha \in (0, 1)$ **Output:** A global optimum z^* of Problem (NC_{ref}) Set $\mathcal{N} \leftarrow \{(\emptyset, \emptyset)\}, f_{\text{inc}} \leftarrow \infty, z_{\text{inc}}^* \leftarrow \text{none}$ while $\mathcal{N} \neq \emptyset$ do Choose $N = (I_0, I_1) \in \mathcal{N}$ Set $\mathcal{N} \leftarrow \mathcal{N} \setminus \{N\}$ Compute $z_N^* \in \operatorname{argmin} \{ f_N(z) : q + Mz \ge 0, z \in [0, 1]^n \}$ if $f(z_N^*) < f_{inc}$ then Set $z_{inc}^* \leftarrow z_N^*$, $f_{inc} \leftarrow f(z_N^*)$ end if if $f_N(z_N^*) < f_{inc}$ and $I \setminus (I_0 \cup I_1) \neq \emptyset$ then

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Input: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$, $I \subseteq \{1, \ldots, n\}$, $\alpha \in (0, 1)$ **Output:** A global optimum z^* of Problem (NC_{ref}) Set $\mathcal{N} \leftarrow \{(\emptyset, \emptyset)\}, f_{inc} \leftarrow \infty, z_{inc}^* \leftarrow none$ while $\mathcal{N} \neq \emptyset$ do Choose $N = (I_0, I_1) \in \mathcal{N}$ Set $\mathcal{N} \leftarrow \mathcal{N} \setminus \{N\}$ Compute $z_N^* \in \operatorname{argmin} \{ f_N(z) : q + Mz \ge 0, z \in [0, 1]^n \}$ if $f(z_N^*) < f_{inc}$ then Set $z_{inc}^* \leftarrow z_N^*$, $f_{inc} \leftarrow f(z_N^*)$ end if if $f_N(z_N^*) < f_{inc}$ and $I \setminus (I_0 \cup I_1) \neq \emptyset$ then Choose $i \in I \setminus (I_0 \cup I_1)$ Set $\mathcal{N} \leftarrow \mathcal{N} \cup \{(I_0 \cup \{j\}, I_1), (I_0, I_1 \cup \{j\})\}$

Input: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$, $I \subseteq \{1, \ldots, n\}$, $\alpha \in (0, 1)$ **Output:** A global optimum z^* of Problem (NC_{ref}) Set $\mathcal{N} \leftarrow \{(\emptyset, \emptyset)\}, f_{inc} \leftarrow \infty, z_{inc}^* \leftarrow none$ while $\mathcal{N} \neq \emptyset$ do Choose $N = (I_0, I_1) \in \mathcal{N}$ Set $\mathcal{N} \leftarrow \mathcal{N} \setminus \{N\}$ Compute $z_N^* \in \operatorname{argmin} \{ f_N(z) : q + Mz \ge 0, z \in [0, 1]^n \}$ if $f(z_N^*) < f_{inc}$ then Set $z_{inc}^* \leftarrow z_N^*$, $f_{inc} \leftarrow f(z_N^*)$ end if if $f_N(z_N^*) < f_{inc}$ and $I \setminus (I_0 \cup I_1) \neq \emptyset$ then Choose $i \in I \setminus (I_0 \cup I_1)$ Set $\mathcal{N} \leftarrow \mathcal{N} \cup \{(I_0 \cup \{i\}, I_1), (I_0, I_1 \cup \{i\})\}$ end if end while

イロト イヨト イヨト イヨト 二日

Input: $q \in \mathbb{R}^n$, $M \in \mathbb{R}^{n \times n}$, $I \subseteq \{1, \ldots, n\}$, $\alpha \in (0, 1)$ **Output:** A global optimum z^* of Problem (NC_{ref}) Set $\mathcal{N} \leftarrow \{(\emptyset, \emptyset)\}, f_{inc} \leftarrow \infty, z_{inc}^* \leftarrow none$ while $\mathcal{N} \neq \emptyset$ do Choose $N = (I_0, I_1) \in \mathcal{N}$ Set $\mathcal{N} \leftarrow \mathcal{N} \setminus \{N\}$ Compute $z_N^* \in \operatorname{argmin} \{ f_N(z) : q + Mz \ge 0, z \in [0, 1]^n \}$ if $f(z_N^*) < f_{inc}$ then Set $z_{inc}^* \leftarrow z_N^*$, $f_{inc} \leftarrow f(z_N^*)$ end if if $f_N(z_N^*) < f_{inc}$ and $I \setminus (I_0 \cup I_1) \neq \emptyset$ then Choose $i \in I \setminus (I_0 \cup I_1)$ Set $\mathcal{N} \leftarrow \mathcal{N} \cup \{(I_0 \cup \{i\}, I_1), (I_0, I_1 \cup \{i\})\}$ end if end while return z_{inc}^*

Finite termination

Theorem

Algorithm MILCP-PBB terminates after finitely many steps with a global optimal solution of Problem (NC_{ref}).

Finite termination

Theorem

Algorithm MILCP-PBB terminates after finitely many steps with a global optimal solution of Problem (NC_{ref}).

Remark

Note that in our branch-and-bound method, there is no direct analogy to pruning due to infeasibility.

In case at a node we find a feasible solution for the MILCP we stop the algorithm

(人間) トイヨト イヨト

Adding simple cuts

Within the node subproblem we include simple bound constraints:

$$\begin{array}{ll} \min & f_N(z) \\ \text{s.t.} & q+Mz \geq 0 \\ & z \in [0,1]^n \\ & z_j \leq 0.5 \ \text{if } j \in I_0 \\ & z_j \geq 0.5 \ \text{if } j \in I_1 \end{array}$$

2

イロト イヨト イヨト --

Adding simple cuts

Within the node subproblem we include simple bound constraints:

$$\begin{array}{ll} \min & f_N(z) \\ \text{s.t.} & q+Mz \geq 0 \\ & z \in [0,1]^n \\ & z_j \leq 0.5 \ \text{if } j \in I_0 \\ & z_j \geq 0.5 \ \text{if } j \in I_1 \end{array}$$

Lemma

Let z_N^* be an optimal solution at node N when simple cuts are included. Then,

$$f(z^*) = \min \{ f_N(z_N^*) \colon N = (I_0, I_1) \text{ with } I_0 \cup I_1 = I \}$$

Adding simple cuts

finite termination

Lemma

Let $N' = (I'_0, I'_1)$ be a successor of some node $N = (I_0, I_1)$ in the branching tree, i.e., $I_0 \subseteq I'_0$ and $I_1 \subseteq I'_1$ holds. Further, let $z_N^*, z_{N'}^*$ be optimal solutions of nodes N and N', respectively, when simple cuts are used. Then,

$$f_N(z_N^*) \leq f_{N'}(z_{N'}^*)$$

holds.

Theorem

Algorithm MILCP-PBB remains correct when simple cuts

$$z_j \leq 0.5$$
 for all $j \in I_0$, $z_j \geq 0.5$ for all $j \in I_1$

are added at any node $N = (I_0, I_1)$.

Randomly generated instances

We built matrices $M \in \mathbb{R}^{n \times n}$ with $n \in \{50, 100, 150, 200, 250, 300, 350, 400, 450, 500\}$.

Randomly generated instances

We built matrices $M \in \mathbb{R}^{n \times n}$ with $n \in \{50, 100, 150, 200, 250, 300, 350, 400, 450, 500\}$.

We then built vectors $q \in \mathbb{R}^n$ in four different ways, each reflecting a certain "degree of feasibility" in the resulting instance.

(人間) トイヨト イヨト

Randomly generated instances

We built matrices $M \in \mathbb{R}^{n \times n}$ with $n \in \{50, 100, 150, 200, 250, 300, 350, 400, 450, 500\}$.

We then built vectors $q \in \mathbb{R}^n$ in four different ways, each reflecting a certain "degree of feasibility" in the resulting instance.

More precisely, we built instances for which $z \in \mathbb{R}^n$ exists so that (a) only $q + Mz \ge 0$, $z \ge 0$ are guaranteed to be satisfied,

イロト 不得下 イヨト イヨト 二日

Randomly generated instances

We built matrices $M \in \mathbb{R}^{n \times n}$ with $n \in \{50, 100, 150, 200, 250, 300, 350, 400, 450, 500\}$.

We then built vectors $q \in \mathbb{R}^n$ in four different ways, each reflecting a certain "degree of feasibility" in the resulting instance.

More precisely, we built instances for which $z \in \mathbb{R}^n$ exists so that

(a) only $q + Mz \ge 0$, $z \ge 0$ are guaranteed to be satisfied,

(b) only $q + Mz \ge 0$, $z \ge 0$ and $z_i \in \{0, 1\}$, $i \in I$ are guaranteed to be satisfied,

イロト 不得下 イヨト イヨト 二日

Randomly generated instances

We built matrices $M \in \mathbb{R}^{n \times n}$ with $n \in \{50, 100, 150, 200, 250, 300, 350, 400, 450, 500\}$.

We then built vectors $q \in \mathbb{R}^n$ in four different ways, each reflecting a certain "degree of feasibility" in the resulting instance.

More precisely, we built instances for which $z \in \mathbb{R}^n$ exists so that

- (a) only $q + Mz \ge 0$, $z \ge 0$ are guaranteed to be satisfied,
- (b) only $q + Mz \ge 0$, $z \ge 0$ and $z_i \in \{0, 1\}$, $i \in I$ are guaranteed to be satisfied,
- (c) only $q + Mz \ge 0$, $z \ge 0$ and complementarity $(z^{*\top}(q + Mz^*) = 0)$ are guaranteed to be satisfied,

Randomly generated instances

We built matrices $M \in \mathbb{R}^{n \times n}$ with $n \in \{50, 100, 150, 200, 250, 300, 350, 400, 450, 500\}$.

We then built vectors $q \in \mathbb{R}^n$ in four different ways, each reflecting a certain "degree of feasibility" in the resulting instance.

More precisely, we built instances for which $z \in \mathbb{R}^n$ exists so that

- (a) only $q + Mz \ge 0$, $z \ge 0$ are guaranteed to be satisfied,
- (b) only $q + Mz \ge 0$, $z \ge 0$ and $z_i \in \{0, 1\}$, $i \in I$ are guaranteed to be satisfied,
- (c) only $q + Mz \ge 0$, $z \ge 0$ and complementarity $(z^{*\top}(q + Mz^*) = 0)$ are guaranteed to be satisfied,

We created 10 instances for every size n and the types (a)–(c), yielding 300 different instances in total.

Numerical results on the use of simple cuts Performance Profiles

Figure: Performance profiles: number of nodes (left), running time (right)

Numerical comparison on branching rules Performance Profiles

Figure: Performance profiles: number of nodes (left), running time (right)

MIQP-based branching rule

We presolve single-binary-variable MIQPs, one for each z_j , $j \in I$:

$$\min_{z \in \mathbb{R}^n} \quad z^\top (q + Mz) \tag{1a}$$

s.t.
$$q + Mz \ge 0, \ z \ge 0,$$
 (1b)
 $z_j \in \{0, 1\}.$ (1c)

measuring the impact of the j-th variable on the infeasibility of the problem

<ロト < 回 ト < 三 ト < 三 ト - 三</p>

MIQP-based branching rule

We presolve single-binary-variable MIQPs, one for each z_j , $j \in I$:

$$\min_{z \in \mathbb{R}^n} \quad z^\top (q + Mz) \tag{1a}$$

s.t.
$$q + Mz \ge 0, \ z \ge 0,$$
 (1b)
 $z_j \in \{0, 1\}.$ (1c)

measuring the impact of the j-th variable on the infeasibility of the problem

We sort the indices $j \in I$ in decreasing order with respect to the optimal objective function values

イロト 不得 トイヨト イヨト 二日

Comparison with other approaches

An MILP reformulation, with additional binary variables and big-M constraints

[Gabriel, Conejo, Ruiz, Siddiqui; 2013]

$$\min_{z,z',z'',\rho,\sigma} \quad \alpha \sum_{i=1}^{n} \rho_i + (1-\alpha) \sum_{i \in I} \sigma_i$$
(2a)

s.t.
$$z \ge 0$$
, $q + Mz \ge 0$, (2b)

$$z \le Bz' + \rho, \tag{2c}$$

$$q + Mz \le B(1 - z') + \rho, \tag{2d}$$

$$0 \le z_I \le z'' + \sigma, \tag{2e}$$

$$z'' - \sigma \le z_I \le 1, \tag{2f}$$

$$z \in \mathbb{R}^n, \quad z' \in \{0,1\}^n, \quad z'' \in \{0,1\}^l, \qquad (2g)$$

$$\sigma \in \mathbb{R}'_{\geq 0}, \quad \rho \in \mathbb{R}^n_{\geq 0}. \qquad (2h)$$

イロト イヨト イヨト イヨト 二日

variables: 3n + 2|I|, (n + |I| constrained to be binary)

Comparison with other approaches

An MIQP reformulation, no big-M constraints

$$\min_{z,z',\sigma} \quad \alpha z^{\top}(q+Mz) + (1-\alpha) \sum_{i \in I} \sigma_i \tag{3a}$$

s.t.
$$z \ge 0$$
, $q + Mz \ge 0$, (3b)

$$0 \le z_I \le z' + \sigma, \tag{3c}$$

$$z' - \sigma \le z_I \le 1, \tag{3d}$$

$$z \in \mathbb{R}^n, \quad z' \in \{0,1\}^I,$$
 (3e)

$$\sigma \in \mathbb{R}_{\geq 0}^{I}.$$
 (3f)

イロン イ団 とくほとう ほとう

variables: n + 2|I|, (|I| constrained to be binary)

э

Comparison with GUROBI addressing the MILP and the MIQP reformulations

Figure: Performance profiles: number of nodes (left), running time (right)

Comparison with GUROBI addressing the MIQP Harder test set (300 instances with n = 100, ..., 600)

Figure: Performance profiles: number of nodes (left), running time (right)

Conclusions

We presented a penalty branch-and-bound method for MILCPs

- the method is able to compute a solution if one exists or it computes an approximate solution that minimizes an infeasibility measure based on the violation of the integrality and complementarity conditions of the problem
- the objective function slightly changes along the nodes so that the penalization of the integrality constraint violation is progressively increased

イロト 不得 トイヨト イヨト

Future work ...useful for MILPs?

Under specific assumption on $P = \{x \in \mathbb{R}^n : Ax \le b\}$ we can prove that $\epsilon > 0$ exists such that

 $\begin{array}{lll} \min & c^{\top}x & \min & c^{\top}x + \frac{1}{\epsilon}\sum_{i \in I}\min\{x_i, 1 - x_i\} \\ \text{s.t.} & Ax \leq b & \longleftrightarrow & \text{s.t.} & Ax \leq b \\ & x_i \in \{0, 1\}, \quad i \in I & x \in [0, 1]^n \end{array}$

イロト 不得下 イヨト イヨト 二日

Future work ...useful for MILPs?

Under specific assumption on $P = \{x \in \mathbb{R}^n : Ax \le b\}$ we can prove that $\epsilon > 0$ exists such that

 $\begin{array}{lll} \min & c^{\top}x & \min & c^{\top}x + \frac{1}{\epsilon}\sum_{i \in I}\min\{x_i, 1 - x_i\} \\ \text{s.t.} & Ax \leq b & \longleftrightarrow & \text{s.t.} & Ax \leq b \\ & x_i \in \{0, 1\}, \quad i \in I & x \in [0, 1]^n \end{array}$

we can use our branch-and-bound framework to solve the nonconvex nonsmooth reformulation of MILPs!

Future work ...useful for MILPs?

Under specific assumption on $P = \{x \in \mathbb{R}^n : Ax \le b\}$ we can prove that $\epsilon > 0$ exists such that

 $\begin{array}{lll} \min & c^{\top}x & \min & c^{\top}x + \frac{1}{\epsilon}\sum_{i \in I}\min\{x_i, 1 - x_i\} \\ \text{s.t.} & Ax \leq b & \Longleftrightarrow & \text{s.t.} & Ax \leq b \\ & x_i \in \{0, 1\}, \quad i \in I & x \in [0, 1]^n \end{array}$

we can use our branch-and-bound framework to solve the nonconvex nonsmooth reformulation of MILPs!

Thanks for your attention!