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Mixed-Binary Linear Complementarity Problems

The mixed-binary linear complementarity problem (MILCP) is the
task to find a vector z ∈ Rn that satisfies

z ≥ 0

q + Mz ≥ 0

z>(q + Mz) = 0

zi ∈ {0, 1} for i ∈ I ⊆ {1, . . . , n}

or to show that no such vector exists, for given

• M ∈ Rn×n, M � 0

• q ∈ Rn
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Application context

Linear Complementarity Problems (LCPs) are an important tool for
the modeling and analysis of equilibrium problems in economics,
mechanics, ... [Cottle, Pang, Stone; “The Linear Complementarity
Problem”; 2009]
[Gabriel, Conejo, Fuller, Hobbs; “Complementarity modeling in
energy markets”; 2012]

When a subset of variables is restricted to take integer values, i.e.,
zi ∈ Z for a given index set I ⊆ {1, . . . , n} we fall in the context of
MILCPs
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Linear Complementarity Problems
QP reformulation

A common tool in the analysis and resolution of a Linear
Complementarity Problem (LCP) is its reformulation as Quadratic
Problem (QP) [Cottle et al.;2009]:

z ≥ 0

q + Mz ≥ 0

z>(q + Mz) = 0

min z>(q + Mz)

s.t. q + Mz ≥ 0

z ≥ 0
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Linear Complementarity Problems
QP reformulation

A common tool in the analysis and resolution of a Linear
Complementarity Problem (LCP) is its reformulation as Quadratic
Problem (QP) [Cottle et al.;2009]:

z ≥ 0

q + Mz ≥ 0

z>(q + Mz) = 0

⇔
min z>(q + Mz)

s.t. q + Mz ≥ 0

z ≥ 0

LCP has a solution if and only if the QP
has an optimal solution with objective function value zero
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MIQP reformulation of a MILCP

Equivalently we can reformulate a MILCP into a MIQP:

z ≥ 0

q + Mz ≥ 0

z>(q + Mz) = 0

zi ∈ {0, 1}, i ∈ I

⇔
min z>(q + Mz)

s.t. q + Mz ≥ 0

z ≥ 0

zi ∈ {0, 1}, i ∈ I

MILCP has a solution if and only if the MIQP
has an optimal solution with objective function value zero

However, the existence of a solution of the MILCP cannot
be expected in general...
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...look for “approximate feasible solutions”

For practically relevant instances where non-existence occurs, one
is interested in “approximate feasible solutions”:

points that minimize a certain infeasibility measure that combines
both the violation of integrality conditions as well as of
complementarity constraints
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Penalizing the violation of complementarity and integrality

min αPC (z) + (1− α)PI (z)

s.t. q + Mz ≥ 0

z ≥ 0

zi ≤ 1, i ∈ I

where

• α ∈ [0, 1]

• PC (z) is a function penalizing the violation of the
complementarity constraints

• PI (z) is a function penalizing the violation of the integrality
constraints

[Raghavachari;1969], [Giannessi, Tardella; 1998], [Zhu; 2003],
[Lucidi, Rinaldi; 2010], [De Santis, Lucidi, Rinaldi; 2013]
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A nonconvex, nonsmooth reformulation of MILCP

min α z>(q + Mz) + (1− α)
∑

i∈I min{zi , 1− zi}

s.t. q + Mz ≥ 0

z ≥ 0

zi ≤ 1, i ∈ I

(NCref )

where

• α ∈ [0, 1]

• PC (z) = z>(q + Mz)

• PI (z) =
∑

i∈I min{zi , 1− zi}

PI (z) is concave and piecewise linear
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Features of the penalty branch-and-bound method

In order to globally solve problem NCref , we address a sequence
of convex quadratic smooth problems that

• share the same feasible set

• progressively increase the penalization of the integrality
constraint violation

⇓
the objective function slightly changes along the iterations!
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Problem at the root node

At the root node of the branch-and-bound tree, we solve the
convex smooth problem

min α z>(q + Mz)

s.t. q + Mz ≥ 0

z ≥ 0

zi ≤ 1, i ∈ I

obtained from Problem (NCref ) by neglecting the second term
in the objective function
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Branching
Let z∗ be the solution of the root node relaxation

Choose an index j ∈ I such that min{z∗j , 1− z∗j } > 0
and build two children nodes:

min{z∗j , 1− z∗j } > 0

©
↙ ↘

add (1− α)zj © © add (1− α)(1− zj)

min α z>(q + Mz) + (1− α)zj

s.t. q + Mz ≥ 0

z ≥ 0, zi ≤ 1, i ∈ I

99K aims to drive zj to 0
in the respective subtree

min α z>(q + Mz) + (1− α)(1− zj)

s.t. q + Mz ≥ 0

z ≥ 0, zi ≤ 1, i ∈ I

99K aims to drive zj to 1
in the respective subtree
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Problem at the node N = (I0, I1)
A node N = (I0, I1) is identified by two sets of indices:

• I0: set of indices j ∈ I for which (1− α)zj is added

• I1: set of indices j ∈ I for which (1− α)(1− zj) is added

The subproblem at node N = (I0, I1) is

min fN(z)

s.t. q + Mz ≥ 0

z ≥ 0

zi ≤ 1, i ∈ I

with

fN(z) = αz>(q + Mz) + (1− α)

∑
j∈I0

zj +
∑
j∈I1

(1− zj)
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Enumerating the partitions (I0, I1) of I ⊆ {1, . . . , n}

The minimum among the optimal solutions of the problems of all
leaf nodes of the fully enumerated branch-and-bound tree is the
optimal solution of Problem (NCref ):

Lemma

Let z∗ be an optimal solution of Problem (NCref ) and z∗N the
solution at the node N = (I0, I1). Then,

f (z∗) = min {fN(z∗N) : N = (I0, I1) with I0 ∪ I1 = I and I0 ∩ I1 = ∅}
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Bounding and Pruning

The optimal value fN(z∗N) of the problem defined at a node N is a
local lower bound for the subtree rooted in N:

Lemma

Let N ′ = (I ′0, I
′
1) be a successor of N = (I0, I1), i.e., I0 ⊆ I ′0 and

I1 ⊆ I ′1. Then,
fN(z∗N) ≤ fN′(z∗N′)

⇓
If z∗N is such that fN(z∗N) ≥ f (z∗inc)

every leaf of the subtree rooted in N cannot yield a better solution
than the best known solution z∗inc

and we can prune the subtree rooted in N
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MILCP-PBB Scheme

Input: q ∈ Rn, M ∈ Rn×n, I ⊆ {1, . . . , n}, α ∈ (0, 1)
Output: A global optimum z∗ of Problem (NCref )

Set N ← {(∅, ∅)}, finc ←∞, z∗inc ← none
while N 6= ∅ do

Choose N = (I0, I1) ∈ N
Set N ← N \ {N}
Compute z∗N ∈ argmin{fN(z) : q + Mz ≥ 0, z ∈ [0, 1]n}
if f (z∗N) < finc then

Set z∗inc ← z∗N , finc ← f (z∗N)
end if
if fN(z∗N) < finc and I \ (I0 ∪ I1) 6= ∅ then

Choose j ∈ I \ (I0 ∪ I1)
Set N ← N ∪ {(I0 ∪ {j}, I1), (I0, I1 ∪ {j})}

end if
end while
return z∗inc
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Finite termination

Theorem

Algorithm MILCP-PBB terminates after finitely many steps with a
global optimal solution of Problem (NCref ).

Remark

Note that in our branch-and-bound method, there is no direct
analogy to pruning due to infeasibility.

In case at a node we find a feasible solution for the MILCP we stop
the algorithm

16
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Adding simple cuts

Within the node subproblem we include simple bound constraints:

min fN(z)

s.t. q + Mz ≥ 0

z ∈ [0, 1]n

zj ≤ 0.5 if j ∈ I0

zj ≥ 0.5 if j ∈ I1

Lemma

Let z∗N be an optimal solution at node N when simple cuts are
included. Then,

f (z∗) = min {fN(z∗N) : N = (I0, I1) with I0 ∪ I1 = I}
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Adding simple cuts
finite termination

Lemma

Let N ′ = (I ′0, I
′
1) be a successor of some node N = (I0, I1) in the

branching tree, i.e., I0 ⊆ I ′0 and I1 ⊆ I ′1 holds. Further, let z∗N , z
∗
N′

be optimal solutions of nodes N and N ′, respectively, when simple
cuts are used. Then,

fN(z∗N) ≤ fN′(z∗N′)

holds.

Theorem

Algorithm MILCP-PBB remains correct when simple cuts

zj ≤ 0.5 for all j ∈ I0, zj ≥ 0.5 for all j ∈ I1

are added at any node N = (I0, I1).
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Numerical results
Randomly generated instances

We built matrices M ∈ Rn×n with
n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}.

We then built vectors q ∈ Rn in four different ways, each reflecting
a certain “degree of feasibility” in the resulting instance.

More precisely, we built instances for which z ∈ Rn exists so that

(a) only q + Mz ≥ 0, z ≥ 0 are guaranteed to be satisfied,

(b) only q + Mz ≥ 0, z ≥ 0 and zi ∈ {0, 1}, i ∈ I are guaranteed
to be satisfied,

(c) only q + Mz ≥ 0, z ≥ 0 and complementarity
(z∗>(q + Mz∗) = 0) are guaranteed to be satisfied,

We created 10 instances for every size n and the types (a)–(c),
yielding 300 different instances in total.

19



Numerical results
Randomly generated instances

We built matrices M ∈ Rn×n with
n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}.

We then built vectors q ∈ Rn in four different ways, each reflecting
a certain “degree of feasibility” in the resulting instance.

More precisely, we built instances for which z ∈ Rn exists so that

(a) only q + Mz ≥ 0, z ≥ 0 are guaranteed to be satisfied,

(b) only q + Mz ≥ 0, z ≥ 0 and zi ∈ {0, 1}, i ∈ I are guaranteed
to be satisfied,

(c) only q + Mz ≥ 0, z ≥ 0 and complementarity
(z∗>(q + Mz∗) = 0) are guaranteed to be satisfied,

We created 10 instances for every size n and the types (a)–(c),
yielding 300 different instances in total.

19



Numerical results
Randomly generated instances

We built matrices M ∈ Rn×n with
n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}.

We then built vectors q ∈ Rn in four different ways, each reflecting
a certain “degree of feasibility” in the resulting instance.

More precisely, we built instances for which z ∈ Rn exists so that

(a) only q + Mz ≥ 0, z ≥ 0 are guaranteed to be satisfied,

(b) only q + Mz ≥ 0, z ≥ 0 and zi ∈ {0, 1}, i ∈ I are guaranteed
to be satisfied,

(c) only q + Mz ≥ 0, z ≥ 0 and complementarity
(z∗>(q + Mz∗) = 0) are guaranteed to be satisfied,

We created 10 instances for every size n and the types (a)–(c),
yielding 300 different instances in total.

19



Numerical results
Randomly generated instances

We built matrices M ∈ Rn×n with
n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}.

We then built vectors q ∈ Rn in four different ways, each reflecting
a certain “degree of feasibility” in the resulting instance.

More precisely, we built instances for which z ∈ Rn exists so that

(a) only q + Mz ≥ 0, z ≥ 0 are guaranteed to be satisfied,

(b) only q + Mz ≥ 0, z ≥ 0 and zi ∈ {0, 1}, i ∈ I are guaranteed
to be satisfied,

(c) only q + Mz ≥ 0, z ≥ 0 and complementarity
(z∗>(q + Mz∗) = 0) are guaranteed to be satisfied,

We created 10 instances for every size n and the types (a)–(c),
yielding 300 different instances in total.

19



Numerical results
Randomly generated instances

We built matrices M ∈ Rn×n with
n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}.

We then built vectors q ∈ Rn in four different ways, each reflecting
a certain “degree of feasibility” in the resulting instance.

More precisely, we built instances for which z ∈ Rn exists so that

(a) only q + Mz ≥ 0, z ≥ 0 are guaranteed to be satisfied,

(b) only q + Mz ≥ 0, z ≥ 0 and zi ∈ {0, 1}, i ∈ I are guaranteed
to be satisfied,

(c) only q + Mz ≥ 0, z ≥ 0 and complementarity
(z∗>(q + Mz∗) = 0) are guaranteed to be satisfied,

We created 10 instances for every size n and the types (a)–(c),
yielding 300 different instances in total.

19



Numerical results
Randomly generated instances

We built matrices M ∈ Rn×n with
n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}.

We then built vectors q ∈ Rn in four different ways, each reflecting
a certain “degree of feasibility” in the resulting instance.

More precisely, we built instances for which z ∈ Rn exists so that

(a) only q + Mz ≥ 0, z ≥ 0 are guaranteed to be satisfied,

(b) only q + Mz ≥ 0, z ≥ 0 and zi ∈ {0, 1}, i ∈ I are guaranteed
to be satisfied,

(c) only q + Mz ≥ 0, z ≥ 0 and complementarity
(z∗>(q + Mz∗) = 0) are guaranteed to be satisfied,

We created 10 instances for every size n and the types (a)–(c),
yielding 300 different instances in total.

19



Numerical results on the use of simple cuts
Performance Profiles
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Figure: Performance profiles: number of nodes (left), running time (right)
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Numerical comparison on branching rules
Performance Profiles
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MIQP-based branching rule

We presolve single-binary-variable MIQPs, one for each zj , j ∈ I :

min
z∈Rn

z>(q + Mz) (1a)

s.t. q + Mz ≥ 0, z ≥ 0, (1b)

zj ∈ {0, 1}. (1c)

measuring the impact of the j-th variable on the infeasibility of the
problem

We sort the indices j ∈ I in decreasing order with respect to the
optimal objective function values
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Comparison with other approaches
An MILP reformulation, with additional binary variables and big-M constraints

[Gabriel, Conejo, Ruiz, Siddiqui; 2013]

min
z,z ′,z ′′,ρ,σ

α

n∑
i=1

ρi + (1− α)
∑
i∈I

σi (2a)

s.t. z ≥ 0, q + Mz ≥ 0, (2b)

z ≤ Bz ′ + ρ, (2c)

q + Mz ≤ B(1− z ′) + ρ, (2d)

0 ≤ zI ≤ z ′′ + σ, (2e)

z ′′ − σ ≤ zI ≤ 1, (2f)

z ∈ Rn, z ′ ∈ {0, 1}n, z ′′ ∈ {0, 1}I , (2g)

σ ∈ RI
≥0, ρ ∈ Rn

≥0. (2h)

# variables: 3n + 2|I |, (n + |I | constrained to be binary)
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Comparison with other approaches
An MIQP reformulation, no big-M constraints

min
z,z ′,σ

αz>(q + Mz) + (1− α)
∑
i∈I

σi (3a)

s.t. z ≥ 0, q + Mz ≥ 0, (3b)

0 ≤ zI ≤ z ′ + σ, (3c)

z ′ − σ ≤ zI ≤ 1, (3d)

z ∈ Rn, z ′ ∈ {0, 1}I , (3e)

σ ∈ RI
≥0. (3f)

# variables: n + 2|I |, (|I | constrained to be binary)
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Comparison with GUROBI addressing the MILP and the
MIQP reformulations
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Figure: Performance profiles: number of nodes (left), running time (right)
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Comparison with GUROBI addressing the MIQP
Harder test set (300 instances with n = 100, . . . , 600)
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Conclusions

We presented a penalty branch-and-bound method for MILCPs

• the method is able to compute a solution if one exists or it
computes an approximate solution that minimizes an
infeasibility measure based on the violation of the integrality
and complementarity conditions of the problem

• the objective function slightly changes along the nodes so that
the penalization of the integrality constraint violation is
progressively increased
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Future work
...useful for MILPs?

Under specific assumption on P = {x ∈ Rn : Ax ≤ b} we can
prove that ε > 0 exists such that

min c>x

s.t. Ax ≤ b

xi ∈ {0, 1}, i ∈ I

⇔
min c>x + 1

ε

∑
i∈I min{xi , 1− xi}

s.t. Ax ≤ b

x ∈ [0, 1]n

we can use our branch-and-bound framework to solve the
nonconvex nonsmooth reformulation of MILPs!

Thanks for your attention!
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