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"Uncertainty"2010
(theory+experiment)

"System 1 Learning"/2018
(experiment)

"System 2 Learning"/2022
(experiment+
opportunity for theory)
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Modern Applied Mathematics as System 2
Physics Informed AI/ML

System 1 & 2 in DL and AI

"From System 1 Deep Learning to System 2
Deep Learning" – Yoshua Bengio, NeurIPS 2019

"Combining Fast and Slow Thinking for
Human-like and Efficient Navigation in
Constrained Environments" – M. Ganappini, et
al, arXiv:2201.07050

Modern (’21) Applied Mathematics as System 2 ... Harvesting
20’s Applied Math + (System 1.8)
Data & Model Revolution (System 1)

System 1 – operates automatically & quickly [Deep Learning,
empowered by Automatic Differentiation]

System 2 – allocates attention to effortfull mental activities
[Building Explainable Heuristics in Quantitative Sciences ]
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Modern Applied Mathematics as System 2
Physics Informed AI/ML

Applied Math ’21 = Harvesting Data and Model Revolution

Applied Math ’21 = Traditional AM + Contemporary AM
Traditional Applied Math

Natural Science Based (motivated by Physics, later Biology,
Enviromental Sciences, etc ...)
Originally largely ODE, PDE, Dynamical Systems, Chaos,
Turbulence, ...

Contemporary AM
More applications, e.g. Engineering, Social sciences, Networks
AI disciplines: Statistics, Data Science, Computer Science,
Machine Learning, Optimization, Control
Deep Learning - most prominent recent addition (automatic
differentiation, very efficient large scale optimization) ... based
a lot on "old" stuff (stochastic gradient descent, sensitivity
analysis)
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Modern Applied Mathematics as System 2
Physics Informed AI/ML

Physics Informed Machine Learning:
Principal Ideas (active discussions)

A-Priori: run a (physics-blind) ML scheme, check physics
Diagnostics: hierarchy of tests

A-Posteriori: embed physics in ML
Loss Function
Graphical Model (structure=explainable) Learning
What we know (structure) vs what we do NOT know (NN)

Model Reduction
Check Hypotheses, Phenomenologies (e.g. forgotten)

Derive New/Old Physical Laws
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Machine Learning for Power Systems
PIML for State & Parameter Estimation

Outline

1 Introduction: Scientific AI &
ML ⊂ Applied Math

Modern Applied Mathematics
as System 2
Physics Informed AI/ML

2 System 1 & System 2 ML for
Power Systems

Machine Learning for Power
Systems

PIML for State & Parameter
Estimation

3 Learning Locational Marginal
Prices & Dispatch

Formulation and System 2
Idea
Validation: Configurations vs
Noise vs # Samples
Future Work. Theory help is
needed.
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Physics Informed Machine Learning for Power Systems

Machine Learning (e.g. Neural Network, Graph Models, etc)

will make Power System Computations
faster (efficient)
possible even when data/measurements incomplete

requires ground-truth data
actual measurements (Phasor Measurement Units, etc)
power flow solvers (microscopic simulations) – reliable,
possibly heavy

can be power-system "informed" (System 2) vs "agnostic"
(System 1)

What is System 1 today may become System 2 tomorrow
(with proper theory & enough of experiments)

methods/options are many
should be gauged to available data, level of uncertainty, etc
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Incomplete Review: Brief, Recent, Biased
AI/ML in Power Systems (System 1, System 2 & juxtaposition)

Structure Learning, Sparse Measurements, Graphical Models, Focus
on Power Distribution: Deka, et al [2016-2019]

Learning ODE: Power Transmission, Dynamic Coefficients in Swing
Equations, Deterministic and Stochastic, Lokhov, et al [2017]

Real-time Faulted Line Localization and PMU Placement in Power
Transmission through CNN: Li, et al [2018]

Collocation Point Neural ODE for Power Systems: Misuris, et al
[2018]

Learning a Generator Model from Terminal Bus Data: many ML
schemes, tradeoffs, ranking models according to regimes, Stulov et
al [2019]

Learning from power system data stream, phasor-detective
approach, Escobar et al [2019]
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Incomplete Review: Brief, Recent, Biased

AI/ML in Power Systems (System 1, System 2 & juxtaposition)

Physics-Informed Graphical Neural Network for Parameter &
State Estimations in Power Systems
https://arxiv.org/abs/2102.06349 (Pagnier & MC))

Embedding Power Flow into Machine Learning for Parameter and
State Estimation https://arxiv.org/abs/2103.14251 (Pagnier
& MC)

Which Neural Network to Choose for Post-Fault Localization,
Dynamic State Estimation and Optimal Measurement Placement in
Power Systems? https://arxiv.org/abs/2104.03115 (Afonin &
MC))
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Machine Learning (Neural Networks) Setting

NN models: General

NNϕ⃗(x⃗) = y⃗

Vector, ϕ⃗, of
Not-Interpretable Parameters
Input vector: x⃗
Output vector: y⃗

NN models: Loss Functions

L2 norm ∥ · · · ∥

Probabilistic (Cross Entropy or
Kullback-Leibler)

Regularizations, e.g. L1 (sparsity,
physical, etc)

NN models: Architectures

Convolutional NN (LeCun 1989 –)

Graph NN (Scarcelli. et al 2009 –)

Neural ODE (Chen et al 2008 –)

Collocation Point NN (Lagaris et al 1998, Raissi et al 2019 –)

Hamiltonian NN (Greydanus et al 2018 –)
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Power Flow Equations

grid-graph, G = (V, E)

complex-valued powers: ∀a ∈ V : Sa ≡ pa + iqa

complex-valued (electric) potentials, ∀a ∈ V : Va ≡ va exp(iθa),

Power Flow (PF) equations:

pa =
∑

b;{a,b}∈E

vavb
[
gab cos

(
θa − θb

)
+ βab sin

(
θa − θb

)]
,

qa =
∑

b;{a,b}∈E

vavb
[
gab sin

(
θa − θb

)
− βab cos

(
θa − θb

)]
,

Direct PF Map: ΠY : S ≡ (Sa|a ∈ V) 7→ V ≡ (Va|a ∈ V) - implicit
(need to solve eqs. - System 1 & System 2 ML may be useful
https://arxiv.org/abs/2103.14251 L. Pagnier & MC)
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Task: State & Parameter Estimation

Inverse PF Map: S = Π−1
Y (V ) – explicit (do not need to solve

eqs. – System 1 and System 2 ML may be useful
https://arxiv.org/abs/2102.06349 L. Pagnier and MC)

State Estimation
Full Observability: given G and Y to estimate
injected/consumed active and reactive powers = application of
the inverse PF map, Π−1

Limited Observability:
Complement Missing power injections/consumptions at the
nodes where voltages and phases are measured
Challenging Version: to reconstruct injected/consumed powers
and also voltages and phases at all nodes of the system.
(super-resolution – will not discuss)

Parameter Estimation
Reconstruct Graph, G = (V, E), and line characteristics, Y

Michael (Misha) Chertkov – chertkov@arizona.edu System 2 Applied Mathematics

https://arxiv.org/abs/2102.06349


Introduction: Scientific AI & ML ⊂ Applied Math
System 1 & System 2 ML for Power Systems

Learning Locational Marginal Prices & Dispatch

Machine Learning for Power Systems
PIML for State & Parameter Estimation

Task SE & PE. Reduced Modeling.

Setting of Partial Observability
Find Equivalent (Reduced) Model of Power System
"Inspired" by Kron Reduction

I (o) = Y (r)V (o)

"o" - observed; "r" - reduced
G(r) ≡ (V(o), E (r))

Y (r) .
= ({a, b}|Y (r)

ab ̸= 0) – associated with the effective (not
necessarily real) power lines, {a, b} ∈ E (r). Y (r)

Reduced Model
S(o) = Π−1

Y (r)(V (o))
Learn it !?
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Task: SE & PE. PIML of Reduced Model

Power Graphical NN (System 2):

min
φ,Y (r)

LPower-GNN

(
φ,Y (r)

)
,

LPower-GNN

(
φ,Y (r)

)
≡ 1

N|V(o)|

N∑
n=1

∥∥∥S(o)
n

− Π−1
Y (r)

(
V (o)

n

)︸ ︷︷ ︸
physics = interpretable

− Σφ

(
V(o)
n ,S (o)

n︸ ︷︷ ︸
NN = "sub-scale"

)∥∥∥2
+ R(φ)︸ ︷︷ ︸

regularization

SIMULTANEOUSLY physics-informed and physics-blind parts
Compare with Vanilla-NN (System 1)

LNN
.
= 1

N|V(0)|

N∑
n=1

∥∥∥S(o)
n − NNφ(V

(o)
n )

∥∥∥2
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Task: SE & PE. Power GNN vs Vanilla NN. Experiments.

IEEE 14-bus [panel (a)], IEEE 118-bus [panel (b)] and PanTaGruEl [panel (c)] models

State Estimation Test: Six set of samples were generated for each network. Average
mismatch of predicted power injections (on the training set in parentesis)

case #1 case #2 case #3 case #4 case #5 case #6
Vanilla NN 4.9E-6 7.2E-5 6.3E-3 5.2E-2 6.3E-2 1.4E0

(4.2E-6) (6.6E-5) (5.0E-5) (3.7E-5) (1.2E-4) (4.2E-6)
Power-GNN 3.0E-6 5.8E-7 6.9E-7 1.3E-6 2.9E-7 3.0E-6
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Task: SE & PE. Power GNN vs Vanilla NN. Experiments.

Full Observability. Parameter Estimation.

Reconstruction of the admittance matrix
Y for IEEE 14-bus (a), IEEE 118-bus (b)
and PanTaGruEl (c) models

The min, mean and max values are
displayed as circles, crosses and squares
respectively (for 10 realizations.)

Notice !!

Quality of the reconstruction by
Power-GNN – especially for large network
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Task: SE & PE. Power GNN vs Vanilla NN. Experiments.

Partial Observability. Parameter Estimation. PanTaGruEl model

Initial (pre-training) values – in green.

Trained values and their Kron-reduction counterparts – red and blue respectively.

(c) shows alternative visualization of the reference-vs-predicted values of the line
conductances (purple) and susceptances (black)

Notice !!

Quality of the reconstruction by Power-GNN – especially for large network
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Validation: Configurations vs Noise vs # Samples
Future Work. Theory help is needed.

Outline

1 Introduction: Scientific AI &
ML ⊂ Applied Math

Modern Applied Mathematics
as System 2
Physics Informed AI/ML

2 System 1 & System 2 ML for
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Machine Learning for Power
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PIML for State & Parameter
Estimation
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Formulation and System 2
Idea
Validation: Configurations vs
Noise vs # Samples
Future Work. Theory help is
needed.
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Learning LMP & Dispatch
min
pg ,θ

∑
g

(qgp
2
g + cgpg )

s.t.
∀g : pg ∈ Range
Power Flow equations

∀i : pi − li =
∑
j∈i

bij(θi − θj)

θslack bus = 0
Line Constraints
∀{i , j} : bij(θi − θj) ∈ Range

Linear Programming (in
DC-approximation)

Locational Marginal Prices are part of the
solution

Observation:

Very few lines are saturated

The Challenge:

To run the dispatch for
MANY l-load configurations
under given network
conditions

Do it faster than your good
LP (plus) solvers can do
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Formulation and System 2 Idea
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Learning LMP & Dispatch
min
pg ,θ

∑
g

(qgp
2
g + cgpg )

s.t.
∀g : pg ∈ Range
Power Flow equations

∀i : pi − li =
∑
j∈i

bij(θi − θj)

θslack bus = 0
Line Constraints
∀{i , j} : bij(θi − θj) ∈ Range

Linear Programming (in
DC-approximation)

Locational Marginal Prices are part of the
solution

Observation:

Very few lines are saturated

The Challenge:

To run the dispatch for
MANY l-load configurations
under given network
conditions

Do it faster than your good
LP (plus) solvers can do

Systems 2 [Physics, i.e.
Power System, Informed]
Machine Learning ?
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Future Work. Theory help is needed.

Efficient Learning of LMPs & Dispatch

Handy to get rid of PF eqs. (and θ – phase angles)

min
pg

∑
g

(qgp
2
g + cgpg )

s.t.
∀g : pg ∈ Range∑
g

pg =
∑
i

li

Line Constraints

∀k = line :
∑
i∈k

Φki (pi − li ) ∈ Range

Power Transfer Distribution Factor (PTDF) Matrix – Φ

Generalizable to AC-OPF (linearization around an operational
point)
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Future Work. Theory help is needed.

Efficient Learning of LMPs & Dispatch

Lagrangian Formulation & Locational Marginal Prices (LMP)

L(pg , λ, µk , νk) =
∑
g
(qgp

2
g + cgpg ) + λ

(∑
g
pg −

∑
i
li

)
+

∑
k

µk

(∑
i
Φki (pi − li )− f max

k

)
−∑

k

νk

(∑
i
Φki (pi − li ) + f min

k

)
∀i : LMPi =

∂L
∂li

= −λ+
∑
k

Φki (νk − µk)
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Formulation and System 2 Idea
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Future Work. Theory help is needed.

Efficient Learning of LMPs & Dispatch

Financial Coherency Conditions = Consequences of KKT:

Revenue Adequacy (RA):
∑
g
LMPgpg ≤

∑
i
LMPi li

Cost Recovery (CR): qgp2
g + cgpg ≤ LMPgpg

Engineer Desiderata: Reduced Model (faster, possibly
approximate evaluation of OPF) guarantees RA & CR
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Future Work. Theory help is needed.

Efficient Learning of LMPs & Dispatch

System 2 Idea:

Take Advantage of Strong Duality (Complementary Slackness
+ Dual Feasibility)

∀k : µk

(∑
i

Φki (pi − li )− f max
k

)
=

−
∑
k

νk

(∑
i

Φki (pi − li ) + f min
k

)
= 0, µk , νk ≥ 0
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Future Work. Theory help is needed.

Suppose we know the saturated lines (µ∗
k ̸= 0 or ν∗k ̸= 0)

Michael (Misha) Chertkov – chertkov@arizona.edu System 2 Applied Mathematics



Introduction: Scientific AI & ML ⊂ Applied Math
System 1 & System 2 ML for Power Systems

Learning Locational Marginal Prices & Dispatch

Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Future Work. Theory help is needed.

Suppose we know the saturated lines (µ∗
k ̸= 0 or ν∗k ̸= 0)

Then the task is much easier than solving OPF !!

Solving the System of Linear Equations (for pg , µk , νk , λ):

∀µ∗
k ̸= 0 :

∑
i

Φki (pi − li ) = f max
k

∀ν∗k ̸= 0 :
∑
i

Φki (pi − li ) = f min
k

∀g : 2qg pg + cg + λ +
∑
k

Φkiµ
∗
k +

∑
k

Φkiν
∗
k = 0

∑
g

pg =
∑
i

li
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Future Work. Theory help is needed.

Suppose we know the saturated lines (µ∗
k ̸= 0 or ν∗k ̸= 0)

Then the task is much easier than solving OPF !!

Solving the System of Linear Equations (for pg , µk , νk , λ):

∀µ∗
k ̸= 0 :

∑
i

Φki (pi − li ) = f max
k

∀ν∗k ̸= 0 :
∑
i

Φki (pi − li ) = f min
k

∀g : 2qg pg + cg + λ +
∑
k

Φkiµ
∗
k +

∑
k

Φkiν
∗
k = 0

∑
g

pg =
∑
i

li

System 2 (PIML) learning:

Train a model (System 1, NN) to find saturated lines
Then solve the Linear System of Eqs.
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Future Work. Theory help is needed.

Classification of Saturated/Binding Lines

Neural Network

NNψ : l →
(

B(µ)
B(ν)

)
, B(x) = (1 : if x ̸= 0, 0otherwise)

simple ... 4 CNN layers, 500 neurons/layer, last layer sigmoid activation f.

Loss Function (logistic regression)

Lψ =
∑

s

∑
k

(
Lreg (y

µ(s)
k ,B(µ

(s)
k )) + Lreg (y

ν(s)
k ,B(ν

(s)
k ))

)
Lreg (x , y) =

{
−log(x), if y = 1
−log(1 − x), if y = 0

Supervise Learning (classification): l -input data; y - output data

Training = Supervised Learning (classification):
Minimize the loss function over the NN parameters, ψ

Given: l -input data; y - output data (saturated lines)
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Future Work. Theory help is needed.

Test: IEEE 118-bus system

Generate many samples of Noise
for given configuration of the
Generator Commitments
(minutes to an hour). Consider
Different Unit Commitments
(Configurations).
The intra-hour re-dispatch only
on "free" generators
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Future Work. Theory help is needed.

Test: IEEE 118-bus system

Generate many samples of Noise
for given configuration of the
Generator Commitments
(minutes to an hour). Consider
Different Unit Commitments
(Configurations).
The intra-hour re-dispatch only
on "free" generators

Quality of Training depends on
Configuration and Noise
(Uncertainty)
Decays with Noise
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
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Test: IEEE 118-bus system

Testing is on different samples
than training (to make sure we
do not overfit)

Quality of Training depends on
Configuration and Noise
(Uncertainty)
Decays with Noise
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Future Work. Theory help is needed.

Test: IEEE 118-bus system

Testing is on different samples
than training (to make sure we
do not overfit)

Checking for other criteria than
used in training
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Future Work. Theory help is needed.

Test: IEEE 118-bus system

Success depends on the Unit Commitment Configuration,
Level of the Noise and Number of Samples
⇒ Phase Transition Type of Behavior = Sharp Changes
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Future Work. Theory help is needed.

Test: IEEE 118-bus system

Success depends on the Unit Commitment Configuration,
Level of the Noise and Number of Samples
⇒ Phase Transition Type of Behavior = Sharp Changes
Larger System ? More realistic Noise (longer correlations)?
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Future Work. Theory help is needed.

Test: New-York ISO Model (designed by Dan-The-Man)

THE MODEL (ARPA-E project led by Dan)

Based on carefully curated real data for New York ISO
1814 buses, 395 generators, 2203 lines
Time: August 28, 2018, 5 pm hour
From Security Constrained Unit Commitment (SCUC): get unit
commitment; factor in committed generators as negative load
Noise

(a) Re-scaled white noise to wind farms. Ignore short time
scales (10-20 min) between consecutive unit commitments
(b) From base load: add noise using factor stressing
methodology – developed by Dan

Major Tool — Real-Time Simulator (SCUC + Security Control
Energy Dispatch/OPF) – developed by Dan
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Future Work. Theory help is needed.

Test: New-York ISO Model (designed by Dan-The-Man)

Preliminary Results (more in two three weeks — next ARPA-E
review)
Under low noise, NN correctly identifies 90% of the line dual
variables as zero or nonzero — pretty good
... but can be improved, perhaps with alternative ML schemes
(may be even simpler than NN, e.g. Support Vector Machine)
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Take Home Message

Quadratic 
Programming ≈

Linear 
Algebra

Classification
of 

Saturated Lines

+

Reduced Modeling = faster, less data, accurate (enough)
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Take Home Message

Complex 
Problem ≈

System 2 
problem

System 1 
problem 

+

Seems Like a General Approach
Open Challenge (for theorists):

Given recent NN theories (for System 1 = quality of
estimations faster/less data/accurate) ⇒ How does the
quality/error propagate to the overall output (of the reduced
model)?
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Trustworthy Scientific AI

Facets of Expert (e.g. scientist/engineer) Trust in AI

Autonomy (distributed agents)

Beneficence (useful for all)

Nonmaleficence (no harm)

Justice (fairness)

Explainability — "system 2 level",
i.e. in use-inspired expert
(physicist, power engineer,
epidemiologist) terms

Prepardness (for rare but possibly
devastating events)

Reproducability (at least two
principally different models agree)
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Theory is Needed for (Scientists & Engineers) Trust

Desiderata:
Explain with Asymptotics: Explain SIMPLE System 1
ML/AI system (one layer & many neurons, many layers &
neurons, ReLU or whatever ..., phase transitions = asymptotic
theory, finite size effects = e.g. finite system # of samples) to
enable System 2
Explain with Structure: Inject more structure in your theory
(e.g. optimization, inference & learning) — Graphical Models
– System 2 (structure) enabler
Prepare with Better Extrapolation: especially of extreme
events, System 2 is needed to generalize into unseen regimes
Reproduce with Alternatives: Many more and
complementary (System 2 and System 1, evolving) Models
(and thus Theories) are NEEDED
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Laurent Pagnier Robert Ferrando

Yury Dvorkin Dan Bienstock
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Support is Appreciated !!
Energy Systems:
UArizona start up +
DOE/ARPA-E

Thanks for your attention !
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• Research focused, since 1976, one of the US first
[dynamical systems, integrability, turbulence …]

• Interdisciplinary: 100+ professors/ 26 departments/ 8 
colleges across UA campus (CoS & CoE & Optics – top 3)

• Mixing traditional @ contemporary Applied Math

• Graduate, Ph.D. focused, no terminal M.Sc.

• 60 Ph.D students (15/13/16/10 enrolled  in 2022/21/20/19)

• 3 Core Courses (1st year -- Methods, Analysis, Algorithms)
https://appliedmath.arizona.edu/students/new-core-courses

• Strong collaborations with Industry (e.g. Raytheon, Uber, 
Intel, Critical Path, etc) and National Labs (e.g. LANL, 
LLNL, NREL, NNSS, BNL, SNL etc) 

• 5 seminar/colloquium series – recorded and posted online

• Participation in many UA & National Edu Projects 

http://appliedmath.arizona.edu/

chertkov@arizona.edu
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How does Mathematics work with Applications @ UArizona?

Applications:
-physical sciences
-engineering sciences
-bio-medical sciences
-social sciences

Extract Mathematical 
Bottlenecks, 

Problems, Challenges
Formulate Problems

Find existing 
or 

develop new methods

Produce Application 
Meaningful Results

Applied Math Cycle
of Discovery

Core courses provide hands on teaching of the AM-cycle methodology
• Training  in methods (Math/APPL 581), theory (Math/APPL 584), algorithms (Math/APPL 589)
• Math (quantitative) and Application-specific (qualitative)  intuition
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