THE UNIVERSITY
OF ARIZONA T PROGRAM IN

PXPPLIED MATHEMATICS

System 2 Applied Mathematics:
Machine Learning for Power Market Clearing

Misha Chertkov Applied Math @ UArizona

May 23, 2022 — DANniversary, MIP2022, Rutgers

Michael (Misha) Chertkov — chertkov@arizona.edu System 2 Applied Mathematics



Network Control under Uncertainty*
fu MIXED INTEGER
= PROGRAMMING

peak @m’“’ma”y @ "System 1 Learning" /2018

(experiment)

@ "Uncertainty"2010
(theory+experi ment)
ACAh\ar:c-e’:Cnnstrained Optimal
Power Flow: Risk-Aware
LIORKSHOP

Learning from power system data stream:
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Introduction: Scientific Al & ML C Applied Math Modern Applied Mathematics as System 2

Physics Informed Al/ML

THINKING,

@ "From System 1 Deep Learning to System 2
Deep Learning" — Yoshua Bengio, NeurlPS 2019

FAST ... SLOW

—
DANIEL @ "Combining Fast and Slow Thinking for
KAHNEMAN Human-like and Efficient Navigation in

Constrained Environments" — M. Ganappini, et
al, arXiv:2201.07050

Modern ('21) Applied Mathematics as System 2 ... Harvesting

20's Applied Math + (System 1.8)
Data & Model Revolution (System 1)

@ System 1 — operates automatically & quickly [Deep Learning,
empowered by Automatic Differentiation]

@ System 2 — allocates attention to effortfull mental activities
[Building Explainable Heuristics in Quantitative Sciences |
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Introduction: Scientific Al & ML C Applied Math
System 1 & System 2 ML for Power Systems
Learning Locational Marginal Prices & Dispatch

Modern Applied Mathematics as System 2
Physics Informed Al/ML

Applied Math '21 = Harvesting Data and Model Revolution

@ Applied Math 21 = Traditional AM + Contemporary AM
@ Traditional Applied Math
o Natural Science Based (motivated by Physics, later Biology,
Enviromental Sciences, etc ...)
o Originally largely ODE, PDE, Dynamical Systems, Chaos,
Turbulence, ...
e Contemporary AM
o More applications, e.g. Engineering, Social sciences, Networks
o Al disciplines: Statistics, Data Science, Computer Science,
Machine Learning, Optimization, Control
o Deep Learning - most prominent recent addition (automatic
differentiation, very efficient large scale optimization) ... based
a lot on "old" stuff (stochastic gradient descent, sensitivity
analysis)

Michael (Misha) Chertkov — chertkov@arizona.edu System 2 Applied Mathematics



Introduction: Scientific Al & ML C Applied Math Miadtarin At MEC s as S 2

Physics Informed Al/ML

Physics Informed Machine Learning:
Principal Ideas (active discussions)

@ A-Priori: run a (physics-blind) ML scheme, check physics
o Diagnostics: hierarchy of tests
@ A-Posteriori: embed physics in ML

e Loss Function
o Graphical Model (structure=explainable) Learning
o What we know (structure) vs what we do NOT know (NN)

@ Model Reduction
o Check Hypotheses, Phenomenologies (e.g. forgotten)

@ Derive New/Old Physical Laws
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Machine Learning for Power Systems

System 1 & System 2 ML for Power Systems PIML for State & Parameter Estimation

QOutline

@ PIML for State & Parameter
Estimation

e System 1 & System 2 ML for
Power Systems
@ Machine Learning for Power
Systems
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Machine Learning for Power Systems

System 1 & System 2 ML for Power Systems PIML for State & Parameter Estimation

Physics Informed Machine Learning for

Machine Learning (e.g. Neural Network, Graph Models, etc)

o will make Power System Computations

o faster (efficient)
o possible even when data/measurements incomplete

@ requires ground-truth data

o actual measurements (Phasor Measurement Units, etc)
o power flow solvers (microscopic simulations) — reliable,
possibly heavy

@ can be power-system "informed" (System 2) vs "agnostic"
(System 1)

o What is System 1 today may become System 2 tomorrow
(with proper theory & enough of experiments)

@ methods/options are many
e should be gauged to available data, level of uncertainty, etc
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Introduction: Scientific Al & ML C Applied Math
System 1 & System 2 or Power Systems
Learning Locational Marginal Prices & Dispatch

Machine Learning for Power Systems
PIML for State & Parameter Estimation

Incomplete Review: Brief, Recent, Biased
Al/ML in Power Systems ( , System 2 & juxtaposition)

@ Structure Learning, Sparse Measurements, Graphical Models, Focus
on Power Distribution: Deka, et al [2016-2019]

@ Learning ODE: Power Transmission, Dynamic Coefficients in Swing
Equations, Deterministic and Stochastic, Lokhov, et al [2017]

@ Real-time Faulted Line Localization and PMU Placement in Power
Transmission through CNN: Li, et al [2018]

@ Collocation Point Neural ODE for Power Systems: Misuris, et al

[2018]

@ Learning a from Terminal Bus Data: many ML
schemes, tradeoffs, ranking models according to regimes, Stulov et
al [2019]

@ Learning from power system data stream, phasor-detective

approach, Escobar et al [2019]
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Machine Learning for Power Systems

System 1 & System 2 ML for Power Systems PIML for State & Parameter Estimation

Incomplete Review: Brief, Recent, Biased

Al/ML in Power Systems ( , System 2 & juxtaposition)

@ Physics-Informed Graphical Neural Network for Parameter &
State Estimations in Power Systems
https://arxiv.org/abs/2102.06349 (Pagnier & MC))

@ Embedding Power Flow into Machine Learning for Parameter and
State Estimation https://arxiv.org/abs/2103.14251 (Pagnier
& MQ)

) for Post-Fault Localization,
Dynamic State Estimation and Optimal Measurement Placement in
Power Systems? https://arxiv.org/abs/2104.03115 (Afonin &
MQC))

v
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Machine Learning for Power Systems

System 1 & System 2 ML for Power Systems PIML for State & Parameter Estimation

Machine Learning (Neural Networks) Setting

W e e Camaal NN models: Loss Functions

o NN (%) =7 @ L2 norm ||---||

@ Probabilistic (Cross Entropy or

° Vector, ¢, of Kullback-Leibler)

Not-Interpretable Parameters

o Input vector: X @ Regularizations, e.g. L1 (sparsity,

o Output vector: y physical, etc) |
@ Convolutional NN (LeCun 1989 -)

@ Graph NN (Scarcelli. et al 2009 -)

@ Neural ODE (Chen et al 2008 -)

@ Collocation Point NN (Lagaris et al 1998, Raissi et al 2019 -)

@ Hamiltonian NN (Greydanus et al 2018 -)
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Introduction: Scientific Al & ML C Applied Math
System 1 & System 2 ML for Power Systems
Learning Locational Marginal Prices & Dispatch

Machine Learning for Power Systems
PIML for State & Parameter Estimation

Power Flow Equations

@ grid-graph, G = (V,€)
@ complex-valued powers: VaeV: S, =p,+1iq,
@ complex-valued (electric) potentials, Va € V : V, = v,exp(if,),
@ Power Flow (PF) equations:
Pa= > Vavh [gab cos (0, — Op) + Bapsin (02 — Gb)},
bi{a,b}e€

da = Z VaVp {gab sin (93 - ob) — Bab cOS (93 - Hb)] s
b;{a,b}e€

@ Direct PF Map: IIy : S = (Ss]la€ V) — V = (V,]a € V) - implicit
(need to solve egs. - System 1 & System 2 ML may be useful
https://arxiv.org/abs/2103.14251 L. Pagnier & MC)
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Introduction: Scientific Al & ML C Applied Math q q
Machine Learning for Power Systems
System 1 & System 2 ML for Power Systems p .
R oo - oS PIML for State & Parameter Estimation
Learning Locational Marginal Prices & Dispatch

Task: State & Parameter Estimation

o Inverse PF Map: S = IT,}(V) - explicit (do not need to solve
eqs. — System 1 and System 2 ML may be useful
https://arxiv.org/abs/2102.06349 L. Pagnier and MC)

o State Estimation
o Full Observability: given G and Y to estimate
injected /consumed active and reactive powers = application of
the inverse PF map, I1~!
o Limited Observability:
o Complement Missing power injections/consumptions at the
nodes where voltages and phases are measured
o Challenging Version: to reconstruct injected /consumed powers
and also voltages and phases at all nodes of the system.
(super-resolution — will not discuss)

@ Parameter Estimation
o Reconstruct Graph, G = (V, ), and line characteristics, Y
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Introduction: Scientific Al & ML C Applied Math
System 1 & System 2 ML for Power Systems
Learning Locational Marginal Prices & Dispatch

Machine Learning for Power Systems
PIML for State & Parameter Estimation

Task SE & PE. Reduced Modeling.

Setting of Partial Observability

Find Equivalent (Reduced) Model of Power System

"Inspired" by Kron Reduction
o 100 — y(r)ylo)

o "o" - observed; "r" - reduced

o G = (Vo) £()
Y = ({a, b}|Ya(t:) # 0) — associated with the effective (not
necessarily real) power lines, {a, b} € £(. Y(")
@ Reduced Model
o 50— TI, (V)

Sy
o Learnit !?

e o
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Introduction: Scientific Al & ML C Applied Math
System 1 & System 2 ML for Power Systems
Learning Locational Marginal Prices & Dispatch

Machine Learning for Power Systems
PIML for State & Parameter Estimation

Task: SE & PE. PIML of Reduced Model

o Power Graphical NN (System 2):

Min Lpower-GNN (90, Y(')) ;
@, Y0

1 N
LPower—GNN (907 Y(f)> = W Zl ‘
n=

2
L (V) —Z,000,59)| + Rig)

physics = interpretable NN = "sub-scale" regularization

s

o SIMULTANEOQOUSLY physics-informed and physics-blind parts
o Compare with Vanilla-NN (System 1)

LN = ke é\l: ‘ S — NN (V(o))
ey 2 ||2n e\ Vn

’ 2
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Machine Learning for Power Systems
PIML for State & Parameter Estimation

Task: SE & PE. Power GNN vs Vanilla NN. Experiments.

System 1 & System 2 ML for Power Systems

IEEE 14-bus [panel (a)], IEEE 118-bus [panel (b)] and PanTaGruEl [panel (c)] models

() (© /i

State Estimation Test: Six set of samples were generated for each network. Average
mismatch of predicted power injections (on the training set in parentesis)
case #1 case #2 case #3 case #4 case #5 case #6
Vanilla NN 4.9E-6 7.2E-5 6.3E-3 5.2E-2 6.3E-2 1.4E0
(42E-6) (6.6E-5) (5.0E-5) (3.7E-5) (1.2E-4) (4.2E-6)
Power-GNN 3.0E-6 5.8E-7 6.9E-7 1.3E-6 2.9E-7 3.0E-6
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Machine Learning for Power Systems

System 1 & System 2 ML for Power Systems PIML for State & Parameter Estimation

: SE & PE. Power GNN vs Vanilla NN. Experiments.

Full Observability. Parameter Estimati
o ° . @ Reconstruction of the admittance matrix
(b) i o s Y for IEEE 14-bus (a), IEEE 118-bus (b)
Losb 8 J and PanTaGruEl (c) models
o 5 g @ The min, mean and max values are
o ° 8z g displayed as circles, crosses and squares
102} 5 8 4 respectively (for 10 realizations.)
(€) »10* 1ol° ml' mI? J
= o ] . .
@ Quality of the reconstruction by
2 oef 1 Power-GNN — especially for large network )
ml" u;‘ 11;2
Sample size
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Machine Learning for Power Systems
PIML for State & Parameter Estimation

Task: SE & PE. Power GNN vs Vanilla NN. Experiments.

System 1 & System 2 ML for Power Systems

(a) 100 (c)
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Partial Observability. Parameter Estimation. PanTaGruEl model

@ Initial (pre-training) values — in green.

@ Trained values and their Kron-reduction counterparts — red and blue respectively.

@ (c) shows alternative visualization of the reference-vs-predicted values of the line
conductances (purple) and susceptances (black)

@ Quality of the reconstruction by Power-GNN — especially for large network
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

QOutline

© Leaming Locational Marginal

Prices & Dispatch

@ Formulation and System 2
Idea

@ Validation: Configurations vs
Noise vs # Samples

@ Future Work. Theory help is
needed.
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Learning LMP & Dispatch

?ig E (qué‘*‘cgpg)
gy
g

s.t.
Vg : pg € Range Observation:
Power Flow equations @ Very few lines are saturated
i opi— = i(0; —0;
Vit opi=l zg: bi(6; = 6;) The Challenge:
JEI
Osjack bus = 0 @ To run the dispatch for

MANY /-load configurations
under given network
conditions

Line Constraints
V{i,j} : bjj(6i —6;) € Range

@ Do it faster than your good

@ Linear Programming (in
LP (plus) solvers can do

DC-approximation)

@ Locational Marginal Prices are part of the
solution
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Learning LMP & Dispatch

?ig E (qué‘*‘cgpg)
gy
g

Observation:
s.t.

Vg : pg € Range @ Very few lines are saturated

Power Flow equations The Challenge:
Vi pi—li = Z bij(6; — 6;) @ To run the dispatch for
JE MANY /-load configurations
Osiack bus = 0 under given network
Line Constraints conditions
V{i,j} : by(0; — 6;) € Range @ Do it faster than your good

LP (plus) solvers can do
@ Linear Programming (in

P mrdneitton) @ Systems 2 [Physics, i.e.

Power System, Informed]
@ Locational Marginal Prices are part of the Machine Learning 7
solution ) ’
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Efficient Learning of LMPs & Dispatch

Handy to get rid of PF egs. (and 6 — phase angles)
min Z(qug + Cgpg)
g

s.t.
Vg : pg € Range

Z Pg = Z l;
g i
Line Constraints
Vk = line : Z(Dk,-(p,- — ;) € Range
ick
@ Power Transfer Distribution Factor (PTDF) Matrix — ®

o Generalizable to AC-OPF (linearization around an operational
point)
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Efficient Learning of LMPs & Dispatch

Lagrangian Formulation & Locational Marginal Prices (LMP)

® L(pg, A, b, Vi) = Y_(qgPG + cgPg) + A (Z Pg— 2 /i> -+
8 ]

g
Zkluk <Z ®ui(pi — 1) — fkmax> -
> Vk <Z ®ui(pi — i) + fkmin>
- :
o Vi: LMP;=9E = —X+ 3 &k — )
k
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Efficient Learning of LMPs & Dispatch

Financial Coherency Conditions = Consequences of KKT:
o Revenue Adequacy (RA): > LMPgp, < > LMP;jl;
g i

o Cost Recovery (CR): qgpZ + cgpg < LMPgpg

@ Engineer Desiderata: Reduced Model (faster, possibly
approximate evaluation of OPF) guarantees RA & CR
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Efficient Learning of LMPs & Dispatch

System 2 ldea:

@ Take Advantage of Strong Duality (Complementary Slackness
+ Dual Feasibility)

o Vk: <Z Sui(pi — I) — fkmax> =

N7 (Z Sri(pi — i) + fkmi”> =0, pr,v=>0
K ;
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples

Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Suppose we know the saturated lines (u} # 0 or v} # 0)
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples

Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Suppose we know the saturated lines (u # 0 or v} # 0)

Then the task is much easier than solving OPF !l

@ Solving the System of Linear Equations (for pg, fik, vk, A):
Vug #0: Y dulp — ) = {7
Vop #£0: D dplp — I) = i
Vg : 2qgpg + g + A+ D Sping + O Pivy =0

k k
Dope =2l
g i

¢
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples

Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Suppose we know the saturated lines (uj # 0 or v} # 0)

Then the task is much easier than solving OPF !l

@ Solving the System of Linear Equations (for pg, fik, vk, A):
Vg A0 > Gkl — ) = £
Vg A0S du(p — ) = "
Vg : 20gpg + cg + A+ D Spipk + D bvi =0
k k

Dope=D i
g i

A\

System 2 (PIML) learning:

@ Train a model (System 1, NN) to find saturated lines
@ Then solve the Linear System of Egs.
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Classification of Saturated/Binding Lines

Neural Network

@ NNy : I/ — ( g%ﬁg ) , B(x)=(1: if x# 0, Ootherwise)

@ simple ... 4 CNN layers, 500 neurons/layer, last layer sigmoid activation f.

A

Loss Function (logistic regression)

0 Ly =3, 5 (Lee(v®, B + Leg (v, B(Y)))

_ [ —og(x),  ify=1
Lreg(x,y) = { —log(1—x), ify=0

@ Supervise Learning (classification): / -input data; y - output data

.

Training = Supervised Learning (classification):

@ Minimize the loss function over the NN parameters, ¥

@ Given: [ -input data; y - output data (saturated lines)
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Test: IEEE 118-bus system

Free generators

Config. #1  {3,5, 11, 12, 18, 30, 34, 40, 42, 43}
Config. #2 {2,5,12, 26, 30, 39}
Config. #3 {5,12,14,20, 30, 37,39}

@ Generate many samples of Noise
for given configuration of the
Generator Commitments
(minutes to an hour). Consider
Different Unit Commitments
(Configurations).

@ The intra-hour re-dispatch only
on "free" generators
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Learning Locational Marginal Prices & Dispatch

Test: IEEE 118-bus system

Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Future Work. Theory help is needed.

Config. #1 Config. #2 Config. #3
Free generators o size training testing training  testing  training  testing
E 2034 DR 1% 50 0(0.00) 0(0.00) 0(0.00) 34002 1000 66(0.05)
Conflg. #1{3,5,11,12,18, SO’fM" 40,42, 43} 1% 100 0(0.00) 0(0.00) 0(0.00) 48(0.03) 0(0.00) 273(0.20)
Config. #2 {2,5,12,26, 30,39} 1% 200 000.00) 6(0.00) 0(0.00) 1040.06) 0(0.00) 342(0.25)
R 5% 50 0(0.00) 0(0.00) 0(0.00) 16(0.01) 9(0.03)  50(0.05)
Config. #3 15,12, 14, 20, 30, 37, 39} 5% 100 0(0.00) 0(0.00) 0(0.00) 43(0.03) 0(0.00) 165(0.14)
5% 200 0(0.00) 6(0.00) 0(0.00) 79(0.05 0(0.00) 232(0.19)
10% 50 0(0.00) 0(0.00) 4(0.00) 19(0.02) 26(0.05)  36(0.04)
10% 100 0(0.00) 0(0.00) 0(0.00) 24(0.02) 6(0.01) 103(0.01)
10% 200 0(0.00) 2(0.00) 0(0.00) 35(0.03) 1(0.00) 133(0.15)

@ Generate many samples of Noise
for given configuration of the
Generator Commitments
(minutes to an hour). Consider
Different Unit Commitments
(Configurations).

@ The intra-hour re-dispatch only
on "free" generators

Michael (Misha) Chertkov —

ertkov@arizona.edu

Table I: Number of misidentifications, i.e. y;‘"“(S) =1 and
B(u\ui‘”)) = 0 or vice versa, over the training and testing
sets. The ratio of misidentifications to number of binding line
constraints is given in parenthesis.

@ Quality of Training depends on
Configuration and Noise
(Uncertainty)

@ Decays with Noise
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Learning Locational Marginal Prices & Dispatch

Test: IEEE 118-bus system

Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Future Work. Theory help is needed.

o #4 #5 #6 #1 #3 #9 #10 #11 #12 #13 #14 #15
1% 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.0 0.01 0.00
5% 0.04 0.01 0.02 0.00 0.03 0.07 0.02 0.00 0.02 0.06 0.05 0.01

10% 0.05 0.03 0.04 0.02 0.06 0.08 0.06 0.02 0.06 0.09 0.05 0.05

Table II: Fraction of misidentifications over testing set for the
13 unit commitment configurations not presented in Table I.

o Testing is on different samples
than training (to make sure we
do not overfit)

Michael (Misha) Chertko!

Config. #1 Config. #2 Config. #3
o size training testing training  testing  training  testing
1% 50 0(0.00) 0(0.00) 0(0.00) 34(0.02) 1(0.0I) 66(0.05)
1% 100  0(0.00) 0(0.00) 0(0.00) 48(0.03) 0(0.00) 273(0.20)

1% 200  0(0.00) 6(0.00) 0(0.00) 104(0.06)  0(0.00) 342(0.25)

5% 50 0(0.00) 00.00) 0(0.00) 160.01) 9(0.03)  50(0.05)
5% 100 0(0.00) 0(0.00) 0(0.00) 43(0.03) 0(0.00) 165(0.14)
5% 200 0(0.00) 6(0.00) 0(0.00) 790.05 0(0.00) 232(0.19)
10% 50 000.00) 00.00) 4(0.00) 190.02) 26(0.05)  36(0.04)
10% 100 0(0.00) 00.00) 0(0.00) 240.02)  6(0.01) 103(0.01)
10% 200 0(0.00) 2(0.00) 0(0.00) 35(0.03) 1(0.00) 133(0.15)

Table I: Number of misidentifications, i.e. y;‘"“(S) =1 and
B(u\ui‘”)) = 0 or vice versa, over the training and testing
sets. The ratio of misidentifications to number of binding line
constraints is given in parenthesis.

@ Quality of Training depends on
Configuration and Noise
(Uncertainty)

@ Decays with Noise
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Learning Locational Marginal Prices & Dispatch

Test: IEEE 118-bus system

Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Future Work. Theory help is needed.

o #4 #5 #6 #1 #8 #9 #10 #11 #12 #13 #14 #15
1% 0.00 0.00 0.00 0.00 0.00 0.02 0.0 0.00 0.00 0.0 0.01 0.00
5% 0.04 0.01 0.02 0.00 0.03 0.07 0.02 0.00 0.02 0.06 0.05 0.01
10% 0.05 0.03 0.04 0.02 0.06 0.08 0.06 0.02 0.06 0.09 0.05 0.05

Table II: Fraction of misidentifications over testing set for the
13 unit commitment configurations not presented in Table 1.

@ Testing is on different samples
than training (to make sure we
do not overfit)

o Revenue Adequacy Strong Duality Cost Recovery
000 )

1% 0.808
5% 0.999 0.997 0.352
10% 0.999 0.992 0.060

Table III: Fraction of the testing samples (over all 15 unit
commitment configurations) that satisfy the key (in)equalities
as stated in Eq. (16)-(18).

@ Checking for other criteria than
used in training

kov@arizona.edu

ied Mathematics



Formulati

n and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Learning Locational Marginal Prices & Dispatch

Future Work. Theory help is needed.

Test: IEEE 118-bus system

Config. #1 Config. #2 Config. #3

max, |Ap,) [pu]

g a5 3 T Qg
Fraction of samples

03 o T
Fraction of samples

5 o5 o T
Fraction of samples

Figure 1: Mismatch between obtained LMPs (top) and generator outputs (bottom) for different load volatility standard deviations:
1% (blue), 5% (orange) and 10% (green) of their nominal values, and the training set consists of: 50 (solid), 100 (dashed) are
200 (dotted) samples. Each panel shows the fraction of the testing set that get maximal mismatches smaller than the ordinate.

@ Success depends on the Unit Commitment Configuration,
Level of the Noise and Number of Samples

@ = Phase Transition Type of Behavior = Sharp Changes
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Formulation and System 2 Idea

Validation: Configurations vs Noise vs # Samples
Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Test: IEEE 118-bus system

Config. #1 Config. #2 Config. #3

max, [ Ap,| [pu]

*? Fraction of samples B

? Fraction of samples “* Fraction ofsamples

Figure 1: Mismatch between obtained LMPs (top) and generator outputs (bottom) for different load volatility standard deviations:
1% (blue), 5% (orange) and 10% (green) of their nominal values, and the training set consists of: 50 (solid), 100 (dashed) are
200 (dotted) samples. Each panel shows the fraction of the testing set that get maximal mismatches smaller than the ordinate.

@ Success depends on the Unit Commitment Configuration,
Level of the Noise and Number of Samples

@ = Phase Transition Type of Behavior = Sharp Changes

o Larger System 7 More realistic Noise (longer correlations)?
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Test: New-York ISO Model (designed by Dan-The-Man)

THE MODEL (ARPA-E project led by Dan)

@ Based on carefully curated real data for New York ISO
@ 1814 buses, 395 generators, 2203 lines
@ Time: August 28, 2018, 5 pm hour
@ From Security Constrained Unit Commitment (SCUC): get unit
commitment; factor in committed generators as negative load
o Noise
o (a) Re-scaled white noise to wind farms. Ignore short time
scales (10-20 min) between consecutive unit commitments
o (b) From base load: add noise using factor stressing
methodology — developed by Dan
@ Major Tool — Real-Time Simulator (SCUC + Security Control

Energy Dispatch/OPF) — developed by Dan
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples

Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.
Test: New-York ISO Model (designed by Dan-The-Man)
1D of Binding Lines: (noiselevel = 0.1) ID of Binding Lines: (noiselevel = 0.4)
1000 1000
800 800
600 600
400 400
200 200
¢ 6 260 460 660 860 10‘00 H‘GD 1460 oS 0 : 500 ' 1‘000 1500 2000

@ Preliminary Results (more in two three weeks — next ARPA-E
review)

@ Under low noise, NN correctly identifies 90% of the line dual
variables as zero or nonzero — pretty good

@ ... but can be improved, perhaps with alternative ML schemes
(may be even simpler than NN, e.g. Support Vector Machine)

Michael (Misha) Chertkov — chertkov@arizona.edu System 2 Applied Mathematics
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Validation: Configurations vs Noise vs # Samples
Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Take Home Message

\ 4 Classification
of
Saturated Lines

o Reduced Modeling = faster, less data, accurate (enough)
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Take Home Message

Q
|

\\—/
System 1

problem

@ Seems Like a General Approach
@ Open Challenge (for theorists):
o Given recent NN theories (for System 1 = quality of
estimations faster/less data/accurate) = How does the

quality/error propagate to the overall output (of the reduced
model)?
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Trustworthy Scientific Al

Facets of Expert (e.g. scientist/engineer) Trust in Al

@ Explainability — "system 2 level",
i.e. in use-inspired expert

@ Autonomy (distributed agents) (physicist, power engineer,

@ Beneficence (useful for all) epidemiologist) terms

@ Nonmaleficence (no harm) @ Prepardness (for rare but possibly
devastating events)

@ Justice (fairness)

@ Reproducability (at least two
principally different models agree)
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Introduction: Scientific Al & ML C Applied Math Formulation and System 2 Idea
System 1 & System 2 ML for Power Systems Validation: Configurations vs Noise vs # Samples
Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Theory is Needed for (Scientists & Engineers) Trust

Desiderata:

o Explain with Asymptotics: Explain SIMPLE System 1
ML/AI system (one layer & many neurons, many layers &
neurons, ReLU or whatever ..., phase transitions = asymptotic
theory, finite size effects = e.g. finite system # of samples) to
enable System 2

@ Explain with Structure: Inject more structure in your theory
(e.g. optimization, inference & learning) — Graphical Models
— System 2 (structure) enabler

@ Prepare with Better Extrapolation: especially of extreme
events, System 2 is needed to generalize into unseen regimes

@ Reproduce with Alternatives: Many more and
complementary (System 2 and System 1, evolving) Models
(and thus Theories) are NEEDED
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Robert Ferrando

7 4 M

Yury Dvorkin Dan Bienstock
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Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples

Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

Support is Appreciated !!

o Energy Systems:
UArizona start up +
DOE/ARPA-E

Thanks for your attention |
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Learning Locational Marginal Prices & Dispatch

Formulation and System 2 Idea
Validation: Configurations vs Noise vs # Samples
Future Work. Theory help is needed.

.

Research focused, since 1976, one of the US first
[dynamical systems, integrability, turbulence ...]

Interdisciplinary: 100+ professors/ 26 departments/ 8
colleges across UA campus (CoS & CoE & Optics — top 3)

Mixing traditional @ contemporary Applied Math
Graduate, Ph.D. focused, no terminal M.Sc.
60 Ph.D students (15/13/16/10 enrolled in 2022/21/20/19)

3 Core Courses (1% year -- Methods, Analysis, Algorithms)
https://appliedmath.arizona.edu/students/new-core-courses

Strong collaborations with Industry (e.g. Raytheon, Uber,
Intel, Critical Path, etc) and National Labs (e.g. LANL,
LLNL, NREL, NNSS, BNL, SNL etc)

5 seminar/colloquium series — recorded and posted online

Participation in many UA & National Edu Projects

http://appliedmath.arizona.edu/

s
1
chertkov@arizona.edu Bt %

"PROGRAM IN

PPLIEI] MATHEMATICS
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Learning Locational Marginal Prices & Dispatch Future Work. Theory help is needed.

How does Mathematics work with Applications @ UArizona?

Applications: Extract Mathematical
-physical sciences Bottlenecks,

-engineering sciences Problems, Challenges
-bio-medical sciences
-social sciences

Formulate Problems

Applied Math Cycle
of Discovery

Find existing
or
develop new methods

Produce Application

Meaningful Results

Core courses provide hands on teaching of the AM-cycle methodology

* Training in methods (Math/APPL 581), theory (Math/APPL 584), algorithms (Math/APPL 589)
*  Math (quantitative) and Application-specific (qualitative) intuition
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