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Non-Convex Mixed-Integer Quadratic Programming

min
x∈Rn

xTH0x+ 2 gT0 x+ f0

s. t. xTHix+ 2 gTi x+ fi ≤ 0 ∀ i ∈ I
l ≤ x ≤ u xJ ∈ Z|J |
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Trust Region Subproblem (TRS)

min
x∈Rn

xTH0x+ 2 gT0 x+ f0

s. t. ‖x‖ ≤ 1

Fact: TRS is polynomial-time solvable. In particular, its Shor SDP relaxation is
exact because

CH := conv
{
(x, xxT ) : ‖x‖ ≤ 1

}
=

{
(x,X) : trace(X) ≤ 1,

(
1 xT

x X

)
� 0

}
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Extended Trust Region Subproblem (ETRS)

min
x∈Rn

xTH0x+ 2 gT0 x+ f0

s. t. ‖x‖ ≤ 1

(additional quadratic constraints)
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Dan’s ETRS Result (2016)
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Dan’s ETRS Result (2016)

Sakaue et al (2016):

“Unfortunately, however, Bienstock’s polynomial-time algorithm does not
appear to be very practical, because [Barvinok’s] polynomial-time feasibility
algorithm [which Bienstock uses] looks difficult to implement.”
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Does ETRS Have an Exact SDP Relaxation?

CH := conv

{
(x, xxT ) :

‖x‖ ≤ 1
(add’l quad constraints)

}

(Prefer to work in the space (x, xxT ))
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The Swiss-Cheese Result

Theorem (Yang-B-Anstreicher 2018)

Starting from the unit ball, remove finitely many ellipsoids and half-spaces. If these
deletions are “nonintersecting,” then CH has a polynomially sized representation
using SDP, RLT, and SOCRLT constraints.

(Will define these constraint types later)
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On the Other Hand: An Elusive Result

CH := conv

{
(x, xxT ) :

‖x‖ ≤ 1
‖Hx− c‖ ≤ ρ

}

This is the CDT (Celis-Dennis-Tapia) problem

Also called TTRS for “two TRS”

In this case, CH does not have a known representation (even when either
H = I or c = 0)
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Our ETRS

min
x∈Rn

xTH0x+ 2 gT0 x+ f0

s. t. r ≤ ‖x‖ ≤ R

‖x‖ ≤ bTx

l ≤ sTx ≤ u

(∃ extensions to ‖Hx − c‖ ≤ bTx − a)
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Motivation: Optimal Power Flow

Chen et al. (2017) studied an important substructure in the ACOPF
(alternating current optimal power flow) problem:

JC := conv



W11

W22

W12

T12

 ∈ R4 :

Ljj ≤ Wjj ≤ Ujj ∀ j = 1, 2
L12W12 ≤ T12 ≤ U12W12

W12 ≥ 0
W11W22 = W 2

12 + T 2
12


Data L = (L11, L22, L12) and U = (U11, U22, U12) satisfy

I L ≤ U and Ljj ≥ 0 for j = 1, 2
I L22 > 0 and U12 > L12
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Motivation: Optimal Power Flow

Theorem (Chen et al. 2017)

JC is obtained by relaxing

W11W22 = W 2
12 + T 2

12 −→ W11W22 ≥ W 2
12 + T 2

12

and enforcing linear cuts

π0 + π1W11 + π2W22 + π3W12 + π4T12 ≥ U22W11 + U11W22 − U11U22

π0 + π1W11 + π2W22 + π3W12 + π4T12 ≥ L22W11 + L11W22 − L11L22

where π0, π1, π2, π3, π4 are constants depending on (L,U)
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Motivation: Optimal Power Flow

π0 := −
√
L11L22U11U22

π1 := −
√
L22U22

π2 := −
√
L11U11

π3 :=
(√

L11 +
√
U11

)(√
L22 +

√
U22

) 1− f(L12)f(U12)

1 + f(L12)f(U12)

π4 :=
(√

L11 +
√
U11

)(√
L22 +

√
U22

) f(L12) + f(U12)

1 + f(L12)f(U12)

where f(x) := (
√
1 + x2 − 1)/x when x > 0 and f(0) := 0
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Motivation: Optimal Power Flow

Proposition (Eltved-B 2020)

JC is a simple projection of

CH := conv

(x, xxT ) :

√
L11 ≤ ‖(x1, x2)‖ ≤

√
U11

‖(x1, x2)‖ ≤ b1x1 + b2x2√
L22 ≤ x3 ≤

√
U22


where b1 and b2 uniquely solve(

1 L12

1 U12

)(
b1
b2

)
=

(√
1 + L2

12√
1 + U2

12

)
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Our ETRS

CH := conv

(x, xxT ) :

r ≤ ‖x‖ ≤ R

‖x‖ ≤ bTx

l ≤ sTx ≤ u
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Valid Constraints: The Shor Relaxation

r2 ≤ trace(X) ≤ R2

trace(X) ≤ bbT •X, bTx ≥ 0

l ≤ sTx ≤ u(
1 xT

x X

)
� 0
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Valid Constraints: RLT

(u− sTx)(sTx− l) ≥ 0 −→ (l + u)sTx ≥ sTXs+ lu
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Valid Constraints: SOCRLT

‖(u− sTx)x‖ ≤ R(u− sTx)

−→ ‖ux−Xs‖ ≤ R(u− sTx)
‖(sTx− l)x‖ ≤ R(sTx− l) −→ ‖Xs− lx‖ ≤ R(sTx− l)

Note: The SOCRLT idea first appeared in Sturm and Zhang (2003)
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Valid Constraints: Kronecker SOC

Fact: ‖v‖ ≤ v0 iff

(
v0 vT

v v0I

)
� 0

Fact: The Kronecker product of PSD matrices is PSD

(
R xT

x R I

)
⊗
(
bTx xT

x (bTx)I

)
� 0

Note: The Kronecker SOC idea first appeared in Anstreicher (2017)
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The Kitchen Sink

Define the KitchenSink to be the relaxation that includes:

Basic SDP relaxation

RLT cut

SOCRLT constraints

Kronecker SOC constraint

Obs: KitchenSink does not capture CH even for n = 2
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New Class of Linear Cuts
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New Class of Linear Cuts
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New Class of Linear Cuts

Can replace sTx− l ≥ 0 and u− sTx ≥ 0 by quadratic q(x) ≥ 0 and linear
l(x) ≥ 0, resp.

Moreover, since the dual feasible set of KitchenSink encodes nonnegative
quadratics, we can use KitchenSink to “bootstrap” q(x) and l(x)

This leads to a separation routine for our cuts, which chooses the best q(x)
and l(x) automatically
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New Class of Linear Cuts

Theorem (Eltved-B 2020)

Bootstrapping from KitchenSink, our class of linear cuts can be ε-separated in
polynomial time, and the cuts strengthen KitchenSink

(But we still don’t have a full representation of CH)
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A Bit of Computation

For each n = 2, . . . , 10, we generated 15,000 random feas instances (with
r = 0)

“Solved” means we get a rank-1 optimal solution

We first solve KitchenSink and then, if necessary, add our cuts

Note: For n = 10, solving KitchenSink took 50 seconds, and generating a
single cut took approximately 64 seconds
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A Bit of Computation

n # unsolved # solved avg cuts
by KitchenSink by new cuts added

2 15 15 2
3 50 30 2
4 36 28 2
5 29 27 3
6 15 12 3
7 13 11 2
8 12 12 2
9 6 5 1

10 6 5 3
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Application: Optimal Power Flow

Proposition (Eltved-B 2020)

The ACOPF cuts

π0 + π1W11 + π2W22 + π3W12 + π4T12 ≥ U22W11 + U11W22 − U11U22

π0 + π1W11 + π2W22 + π3W12 + π4T12 ≥ L22W11 + L11W22 − L11L22

are members of our class
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Application: The Nonnegative Ball

CH := conv
{
(x, xxT ) : ‖x‖ ≤ 1, x ≥ 0

}

= conv

{
(x, xxT ) :

‖x‖ ≤ 1, x ≥ 0
0 ≤ sTx ≤ 1 ∀ ‖s‖ = 1

}

⊆ conv

{
(x, xxT ) :

‖x‖ ≤ 1, ‖x‖ ≤ eTx
0 ≤ sTx ≤ 1 ∀ ‖s‖ = 1

}

(Equality holds for n = 2)
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Application: The Nonnegative Ball

Theorem (Eltved-B 2020)

Let (I, J) be a partition of {1, . . . , n}, and define the domain

DIJ :=

{
(x,X) :

[Xe− x]I ≥ 0
[Xe− x]J ≤ 0

}
.

Then the following SOC constraints are locally valid on DIJ :

‖[Xe− x]J‖ ≤ 1− trace(X)

‖[Xe− x]I‖ ≤ eTx− trace(X)
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Application: The Nonnegative Ball

Conjecture
For n = 2, KitchenSink plus these locally valid cuts capture CH
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Conclusions

Thanks to the MIP organizers!
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