24-05-22 MIP 2022, DIMACS, Rutgers University

Binary extended formulations and sequential convexification

Manuel Aprile, Michele Conforti, Marco Di Summa University of Padua

Binarizations

Let x be a variable that ranges from 0 to k.

A binarization of x is a linear formulation with variables x and y_1, \ldots, y_d (between 0 and 1), so that integrality of x is implied by the integrality of y_1, \ldots, y_d .

- Unary: $x = \sum_{i=1}^{k} y_i$ with $y_1 \ge \cdots \ge y_k$ [Roy 07]
- Full: $x = \sum_{i=1}^k i \cdot y_i$ with $\sum_{i=1}^k y_i \leq 1$. [Sherali, Adams 13]

Binarizations

Let x be a variable that ranges from 0 to k.

A binarization of x is a linear formulation with variables x and y_1, \ldots, y_d (between 0 and 1), so that integrality of x is implied by the integrality of y_1, \ldots, y_d .

- Unary: $x = \sum_{i=1}^{k} y_i$ with $y_1 \ge \cdots \ge y_k$ [Rey 07]
- Full: $x = \sum_{i=1}^{k} i \cdot y_i$ with $\sum_{i=1}^{k} y_i \leq 1$. [Sherali, Adams 13]
- Logarithmic: $x = \sum_{i=1}^{t} 2^{i-1} y_i$, with $k = 2^t 1$ [Owen, Mehrotra 02]

Binarizations

Let x be a variable that ranges from 0 to k.

A binarization of x is a linear formulation with variables x and y_1, \ldots, y_d (between 0 and 1), so that integrality of x is implied by the integrality of y_1, \ldots, y_d .

- Unary: $x = \sum_{i=1}^{k} y_i$ with $y_1 \ge \cdots \ge y_k$ [Roy 07]
- Full: $x = \sum_{i=1}^{k} i \cdot y_i$ with $\sum_{i=1}^{k} y_i \leq 1$. [Sherali, Adams 13]
- Logarithmic: $x = \sum_{i=1}^{t} 2^{i-1} y_i$, with $k = 2^t 1$ [Owen, Mehrotra 02]

A polytope $B \subseteq \{(x, y) : (x, y) \in \mathbb{R} \times [0, 1]^d\}$ is a binarization of x in the range $\{0, ..., k\}$ if

 $\pi_x(\{(x, y) \in B : y \in \{0, 1\}^d\}) = \{0, \dots, k\}.$

Why binarizations, and which one?

IP solvers deal more easily with binary variables than general integer variables.

- Cutting planes generated from variables of a binarizations can be more effective. [Bonami, Margot 15]
- Unimodular (generalization of full and unary) are optimal in terms of split closure, but they have *k* variables. [Dash, Gunluk, Hildebrand 18]

But...

- The logarithmic binarization has only $O(\log k)$ variables, but can lead to worse B&B trees than original formulation. [Owen, Mehrotra 02]
- "Although this substitution is valid, it should be avoided if possible." [Optimization Modelling with LINGO]

Why binarizations, and which one?

- Cutting planes generated from variables of a binarizations can be more effective. [Bonami, Margot 15]
- Unimodular (generalization of full and unary) are optimal in terms of split closure, but they have *k* variables. [Dash, Gunluk, Hildebrand 18]

But...

- The logarithmic binarization has only $O(\log k)$ variables, but can lead to worse B&B trees than original formulation. [Owen, Mehrotra 02]
- "Although this substitution is valid, it should be avoided if possible." [Optimization Modelling with LINGO]

We propose a different way to compare binarizations inspired by a connection with sequential convexification.

Our contributions

- We propose a "natural" notion of binarizations and we characterize the vertices of formulations that use such binarizations.
- We define the rank of a binarization, related to sequential convexification and the lift-and-project rank
- We give formulas for the rank of the binarizations known in the literature, and show that
 - Unary is better than full
 - Logarithmic is optimal (among those with the same number of variables).

Sequential convexification

The convexification a polytope Q with respect to a binary variable x_i is

$$Q_{x_i} := \operatorname{conv} (\{x \in Q : x_i = 0\} \cup \{x \in Q : x_i = 1\}).$$

If $Q \subset [0,1]^p \times \mathbb{R}^{n-p}$, one has

 $\operatorname{conv}\{x \in Q : x_i \in \{0, 1\} \, \forall i \in [p]\} = (((Q_{x_1})_{x_2}) \dots)_{x_p}.$

[Balas Perregaard 02]

Sequential convexification

The convexification a polytope Q with respect to a binary variable x_i is $Q_{x_i} := \operatorname{conv} (\{x \in Q : x_i = 0\} \cup \{x \in Q : x_i = 1\}).$ If $Q \subset [0, 1]^p \times \mathbb{R}^{n-p}$, one has $\operatorname{conv} \{x \in Q : x_i \in \{0, 1\} \forall i \in [p]\} = (((Q_{x_1})_{x_2}) \dots)_{x_p}.$

The lift-and-project rank of Q is the minimum integer k such that there are $i_1, ..., i_k \in [p]$ such that

 $conv\{x \in Q : x_i \in \{0, 1\} \ \forall i \in [p]\} = ((Q_{x_{i_1}}) \dots)_{x_{i_k}}$

One can see this as a hitting set problem: convexifying wrt x_i we "get rid" of all vertices of Q whose x_i -component is fractional. We need to pick $i_1, \ldots, i_k \in [p]$ so that each fractional vertex of Q has a fractional component in some of i_1, \ldots, i_k . Sequential convexification converges in a finite number of steps to the integer hull, while general disjunctions do not converge.

In this example, using split disjunctions does not converge if only x_1 , x_2 are required to be integer.

But, if we associate to x_1 , x_2 a binarization, we obtain the integer hull by convexifying a small number of 0/1 variables.

Natural binarizations and their vertices

We consider a polytope $P \subseteq [0, k]^n$ and a binary extended formulation

$$Q := \{ (x, y) \in \mathbb{R}^n \times [0, 1]^{nk} : x \in P, (x_i, y_i) \in B_i \, \forall i \in [n] \}.$$

where B_i is a binarization for x_i .

Convexifying all the *y*-variables leads to the integer hull $P_I = P \cap \mathbb{Z}^n$.

In order to study the lift-and-project rank of Q, we would like to understand its vertices...

Natural binarizations and their vertices

We consider a polytope $P \subseteq [0, k]^n$ and a binary extended formulation

$$Q := \{ (x, y) \in \mathbb{R}^n \times [0, 1]^{nk} : x \in P, (x_i, y_i) \in B_i \, \forall i \in [n] \}.$$

where B_i is a binarization for x_i .

Convexifying all the y-variables leads to the integer hull $P_I = P \cap \mathbb{Z}^n$.

In order to study the lift-and-project rank of Q, we would like to understand its vertices...

We can characterize exactly the vertices of Q, and their x-projections, under a natural assumption.

Definition

A binarization B is natural if, for each vertex (x, y) of B, x is integer.

Theorem

Let $P \subseteq [0, k]^n$ be a polytope and let Q be a binary extended formulation of P with natural binarizations. Then $\bar{x} \in \mathbb{R}^n$ is a point in $\pi_x(V(Q))$ if and only if there exist $I \subseteq [n]$, $\alpha_i \in \mathbb{Z}$ for $i \in I$, and a face F of P of dimension |I| such that

$$F \cap \{x_i = \alpha_i \; \forall i \in I\} = \{\bar{x}\}.$$

Projections of vertices are exactly the 0-dimensional intersections of faces of P with the integer grid.

Theorem

Let $P \subseteq [0, k]^n$ be a polytope and let Q be a binary extended formulation of P with natural binarizations. Then $\bar{x} \in \mathbb{R}^n$ is a point in $\pi_x(V(Q))$ if and only if there exist $I \subseteq [n]$, $\alpha_i \in \mathbb{Z}$ for $i \in I$, and a face F of P of dimension |I| such that

$$F \cap \{x_i = \alpha_i \; \forall i \in I\} = \{\bar{x}\}.$$

In particular, projections of vertices of Q do not depend on the binarizations used!

Theorem

Let $P \subseteq [0, k]^n$ be a polytope and let Q be a binary extended formulation of P with natural binarizations. Then $(\bar{x}, \bar{y}) \in \mathbb{R}^n \times [0, 1]^{nd}$ is a vertex of Q if and only if there exist $I \subseteq [n]$, $\alpha_i \in \mathbb{Z}$ for $i \in I$, and a face F of P of dimension |I| such that:

•
$$F \cap \{x_i = \alpha_i \ \forall i \in I\} = \{\bar{x}\};$$

•
$$(\bar{x}_i, \bar{y}_i) \in V(B_i) \forall i \in I;$$

•
$$(\bar{x}_i, \bar{y}_i) \in V(B_i \cap \{x_i = \bar{x}_i\}) \ \forall i \in [n] \setminus I.$$

$$P = \{ (x_1, x_2, x_3) \in [0, 2]^2 \times \mathbb{R} : hx_1 + hx_2 + x_3 \le 2h \\ x_3 \le 2hx_1 \\ x_3 \le 2hx_2 \\ x_3 > 0 \}$$

For $i = 1, 2, B_i = \{(x_i, y_{i1}, y_{i2}) \in \mathbb{R} \times [0, 1]^2 : x_i = y_{i1} + y_{i2}, y_{i1} \ge y_{i2}\}$

V(Q) consists of the following points:

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>y</i> ₁₁	<i>Y</i> 12	<i>y</i> ₂₁	<i>Y</i> 22
0	0	0	0	0	0	0
2	0	0	1	1	0	0
0	2	0	0	0	1	1
1/2	1/2	h	1/2	0	1/2	0
1/2	1/2	h	1/2	0	1/4	1/4
1/2	1/2	h	1/4	1/4	1/2	0
1/2	1/2	h	1/4	1/4	1/4	1/4
1	0	0	1	0	0	0
0	1	0	0	0	1	0
1	1	0	1	0	1	0
1	1	0	1/2	1/2	1	0
1	1	0	1	0	1/2	1/2
1	1/3	2h/3	1	0	1/3	0
1	1/3	2h/3	1	0	1/6	1/6
1/3	1	2h/3	1/3	0	1	0
1/3	1	2h/3	1/6	1/6	1	0

V(Q) consists of the following points:

Convexifying variables y_{11} , y_{21} is enough to obtain the integer hull.

The structure of the hitting set problem of a binary extended formulation depends on both P and the binarizations and can be complex. However, the situations simplifies if we restrict to a single x_i and B.

Let $\alpha \in \mathbb{Z}$. What is the minimum number of variables y_{ij} to convexify in order to get rid of all vertices $(x, y) \in Q$ with $\alpha < x_i < \alpha + 1$?

Thanks to our characterization of vertices of Q, it turns out that, if B is natural, the answer only depends on B and α , and not on P!

Given any binary extended formulation where natural binarization B is associated to variable x_i , and $\alpha \in \mathbb{Z}$, the rank $\operatorname{rk}_B(\alpha)$ is the minimum number of variables y_{ij} of B to convexify in order to get rid of all vertices $(x, y) \in Q$ with $\alpha < x_i < \alpha + 1$.

Intuitively, $rk_B(\cdot)$ measures the progress made towards ensuring the integrality of x_i via application of sequential convexification.

Given any binary extended formulation where natural binarization *B* is associated to variable x_i , and $\alpha \in \mathbb{Z}$, the rank $\operatorname{rk}_B(\alpha)$ is the minimum number of variables y_{ij} of *B* to convexify in order to get rid of all vertices $(x, y) \in Q$ with $\alpha < x_i < \alpha + 1$.

Intuitively, $rk_B(\cdot)$ measures the progress made towards ensuring the integrality of x_i via application of sequential convexification.

For $\alpha_1, ..., \alpha_\ell \in \mathbb{Z}$, the rank $\mathsf{rk}_B(\alpha_1, ..., \alpha_\ell)$ is the minimum number of variables y_{ij} of B to convexify in order to get rid of all vertices $(x, y) \in Q$ with $\alpha_j < x_i < \alpha_j + 1$ for any $j = 1, ..., \ell$.

 $\mathsf{rk}_B(\alpha) = \mathsf{minimum}$ number of variables y_{ij} of B to convexify in order to get rid of all vertices $(x, y) \in Q$ with $\alpha < x_i < \alpha + 1$.

$$B = \{(x_i, y) \in \mathbb{R} \times [0, 1]^3 : x_i = \sum_{j=1}^d y_j, \ 1 \ge y_1 \ge y_2 \ge y_3 \ge 0\};$$

$$\mathsf{rk}_B(\alpha) = 1$$
 for $\alpha = 0, 1, 2$

Given a natural binarization $B \subseteq [0, k] \times [0, 1]^d$ and $\alpha \in \{0, ..., k-1\}$, we say that edge $((x^u, y^u), (x^v, y^v))$ of B is an α -edge if $x^u \leq \alpha$ and $x^v \geq \alpha + 1$, or viceversa.

The indicator set of edge $((x^u, y^u), (x^v, y^v))$ is the set of indices $i \in [d]$ for which $y_i^u \neq y_i^v$.

Given a natural binarization $B \subseteq [0, k] \times [0, 1]^d$ and $\alpha \in \{0, \dots, k-1\}$, we say that edge $((x^u, y^u), (x^v, y^v))$ of B is an α -edge if $x^u \leq \alpha$ and $x^{\nu} \geq \alpha + 1$, or viceversa.

The indicator set of edge $((x^u, y^u), (x^v, y^v))$ is the set of indices $i \in [d]$ for which $y_i^u \neq y_i^v$.

Lemma

 $\mathsf{rk}_B(\alpha_1, \dots, \alpha_\ell) = \min |I| : I \subseteq [d]$ hits the indicator sets of all α_j -edges of B, for $j \in [\ell]$.

Proof idea: the rank is also equal to the lift-and-project rank of a certain polytope inside B.

Unary binarization

$$B^{U} = \{(x, y) \in \mathbb{R} \times [0, 1]^{k} : x = \sum_{i=1}^{k} y_{i}, 1 \ge y_{1} \ge \cdots \ge y_{k} \ge 0\};$$

 $\mathsf{rk}_{B^{U}}(\alpha_{1},\ldots,\alpha_{\ell})=\ell.$

Full binarization

$$\mathsf{rk}_{B^F}(\alpha_1, \dots, \alpha_\ell) = k - \min_{j \in [\ell]} \alpha_j.$$

 $k - \min_{j \in [\ell]} \alpha_j \ge k - (k - \ell) = \ell$, hence: Unary has smaller rank than Full: $\mathsf{rk}_{B^F}(\cdots) \ge \mathsf{rk}_{B^U}(\cdots).$

$$B^{L} = \{(x, y) \in \mathbb{R} \times [0, 1]^{d} : x = \sum_{i=1}^{d} 2^{i-1} y_{i}\}.$$

Observation: indicator sets of α -edges are singletons, and parallel edges have the same indicator set.

$$B^{L} = \{(x, y) \in \mathbb{R} \times [0, 1]^{d} : x = \sum_{i=1}^{d} 2^{i-1} y_i\}.$$

 $\mathsf{rk}_{B^{L}}(0) = 3$, $\mathsf{rk}_{B^{L}}(1) = 2$, $\mathsf{rk}_{B^{L}}(3) = 1$.

Hypercube binarizations

The logarithmic binarization has $\lceil \log_2(k) \rceil$ variables, but large rank. Is there any binarization with the same number of variables, but with lower rank?

Hypercube binarizations

The logarithmic binarization has $\lceil \log_2(k) \rceil$ variables, but large rank.

Is there any binarization with the same number of variables, but with lower rank? No!

Definition

Binarization $B \subseteq [0, k] \times [0, 1]^d$ is a hypercube binarization if $\pi_y(B) = [0, 1]^d$ ($\implies d = \lceil \log_2(k) \rceil$.)

Theorem

For any hypercube binarization B,

$$\mathsf{rk}_B(\alpha_1, \dots, \alpha_\ell) \geq \mathsf{rk}_{B^L}(\alpha_1, \dots, \alpha_\ell).$$

The logarithmic binarization is optimal among hypercube binarizations.

Open questions

- What is the trade-off between the number of variables in a binarization and its rank?
- Is the unary binarization optimal among the "simplex" binarizations?
- Is there a binarization with $O(\log k)$ variables that is better than the logarithmic?

Open questions

- What is the trade-off between the number of variables in a binarization and its rank?
- Is the unary binarization optimal among the "simplex" binarizations?
- Is there a binarization with $O(\log k)$ variables that is better than the logarithmic?

Thank you for your attention.