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Binarizations

Let x be a variable that ranges from 0 to k .
A binarization of x is a linear formulation with variables x and
y1, ... , yd (between 0 and 1), so that integrality of x is implied by the
integrality of y1, ... , yd .

• Unary: x =
∑k

i=1 yi with y1 ≥ · · · ≥ yk [Roy 07]

• Full: x =
∑k

i=1 i · yi with
∑k

i=1 yi ≤ 1. [Sherali, Adams 13]

• Logarithmic: x =
∑t

i=1 2i−1yi , with k = 2t − 1 [Owen, Mehrotra 02]
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Binarizations

Let x be a variable that ranges from 0 to k .
A binarization of x is a linear formulation with variables x and
y1, ... , yd (between 0 and 1), so that integrality of x is implied by the
integrality of y1, ... , yd .

• Unary: x =
∑k

i=1 yi with y1 ≥ · · · ≥ yk [Roy 07]

• Full: x =
∑k

i=1 i · yi with
∑k

i=1 yi ≤ 1. [Sherali, Adams 13]

• Logarithmic: x =
∑t

i=1 2i−1yi , with k = 2t − 1 [Owen, Mehrotra 02]

A polytope B ⊆ {(x , y) : (x , y) ∈ R× [0, 1]d} is a binarization of x in
the range {0, ... , k} if

πx({(x , y) ∈ B : y ∈ {0, 1}d}) = {0, ... , k}.



Why binarizations, and which one?

IP solvers deal more easily with binary variables than general integer
variables.

• Cutting planes generated from variables of a binarizations can be
more effective. [Bonami, Margot 15]

• Unimodular (generalization of full and unary) are optimal in terms
of split closure, but they have k variables. [Dash, Gunluk, Hildebrand 18]

But...

• The logarithmic binarization has only O( log k) variables, but can
lead to worse B&B trees than original formulation. [Owen, Mehrotra 02]

• “Although this substitution is valid, it should be avoided if
possible.” [Optimization Modelling with LINGO]



Why binarizations, and which one?

• Cutting planes generated from variables of a binarizations can be
more effective. [Bonami, Margot 15]

• Unimodular (generalization of full and unary) are optimal in terms
of split closure, but they have k variables. [Dash, Gunluk, Hildebrand 18]

But...

• The logarithmic binarization has only O( log k) variables, but can
lead to worse B&B trees than original formulation. [Owen, Mehrotra 02]

• “Although this substitution is valid, it should be avoided if
possible.” [Optimization Modelling with LINGO]

We propose a different way to compare binarizations inspired by a
connection with sequential convexification.



Our contributions

• We propose a “natural” notion of binarizations and we characterize
the vertices of formulations that use such binarizations.

• We define the rank of a binarization, related to sequential
convexification and the lift-and-project rank

• We give formulas for the rank of the binarizations known in the
literature, and show that

• Unary is better than full

• Logarithmic is optimal (among those with the same number
of variables).



Sequential convexification

The convexification a polytope Q with respect to a binary variable xi is

Qxi := conv ({x ∈ Q : xi = 0} ∪ {x ∈ Q : xi = 1}) .

If Q ⊂ [0, 1]p × Rn−p, one has

conv{x ∈ Q : xi ∈ {0, 1} ∀i ∈ [p]} = (((Qx1)x2) ... )xp .

[Balas Perregaard 02]



Sequential convexification

The convexification a polytope Q with respect to a binary variable xi is

Qxi := conv ({x ∈ Q : xi = 0} ∪ {x ∈ Q : xi = 1}) .

If Q ⊂ [0, 1]p × Rn−p, one has

conv{x ∈ Q : xi ∈ {0, 1} ∀i ∈ [p]} = (((Qx1)x2) ... )xp .

The lift-and-project rank of Q is the minimum integer k such that
there are i1, ... , ik ∈ [p] such that

conv{x ∈ Q : xi ∈ {0, 1} ∀i ∈ [p]} = ((Qxi1
) ... )xik

One can see this as a hitting set problem: convexifying wrt xi we “get
rid” of all vertices of Q whose xi -component is fractional.
We need to pick i1, ... , ik ∈ [p] so that each fractional vertex of Q has
a fractional component in some of i1, ... , ik .



Sequential convexification converges in a finite number of steps to the
integer hull, while general disjunctions do not converge.

In this example, using split disjunctions does not converge if only x1, x2

are required to be integer.

But, if we associate to x1, x2 a binarization, we obtain the integer hull
by convexifying a small number of 0/1 variables.
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Natural binarizations and their vertices

We consider a polytope P ⊆ [0, k]n and a binary extended formulation

Q := {(x , y) ∈ Rn × [0, 1]nk : x ∈ P, (xi , yi ) ∈ Bi ∀i ∈ [n]}.

where Bi is a binarization for xi .

Convexifying all the y -variables leads to the integer hull PI = P ∩ Zn.

In order to study the lift-and-project rank of Q, we would like to
understand its vertices...

We can characterize exactly the vertices of Q, and their x-projections,
under a natural assumption.
Definition

A binarization B is natural if, for each vertex (x , y) of B, x is integer.
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Q := {(x , y) ∈ Rn × [0, 1]nk : x ∈ P, (xi , yi ) ∈ Bi ∀i ∈ [n]}.

where Bi is a binarization for xi .

Convexifying all the y -variables leads to the integer hull PI = P ∩ Zn.

In order to study the lift-and-project rank of Q, we would like to
understand its vertices...

We can characterize exactly the vertices of Q, and their x-projections,
under a natural assumption.
Definition

A binarization B is natural if, for each vertex (x , y) of B, x is integer.



Theorem

Let P ⊆ [0, k]n be a polytope and let Q be a binary extended formulation
of P with natural binarizations. Then x̄ ∈ Rn is a point in πx(V (Q)) if
and only if there exist I ⊆ [n], αi ∈ Z for i ∈ I , and a face F of P of
dimension |I | such that

F ∩ {xi = αi ∀i ∈ I} = {x̄}.

Projections of vertices are exactly the 0-dimensional intersections of
faces of P with the integer grid.
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Theorem

Let P ⊆ [0, k]n be a polytope and let Q be a binary extended formulation
of P with natural binarizations. Then x̄ ∈ Rn is a point in πx(V (Q)) if
and only if there exist I ⊆ [n], αi ∈ Z for i ∈ I , and a face F of P of
dimension |I | such that

F ∩ {xi = αi ∀i ∈ I} = {x̄}.

In particular, projections of vertices of Q do not depend on the
binarizations used!
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Theorem

Let P ⊆ [0, k]n be a polytope and let Q be a binary extended formulation
of P with natural binarizations. Then (x̄ , ȳ) ∈ Rn × [0, 1]nd is a vertex
of Q if and only if there exist I ⊆ [n], αi ∈ Z for i ∈ I , and a face F of
P of dimension |I | such that:

• F ∩ {xi = αi ∀i ∈ I} = {x̄};

• (x̄i , ȳi ) ∈ V (Bi ) ∀i ∈ I ;

• (x̄i , ȳi ) ∈ V (Bi ∩ {xi = x̄i}) ∀i ∈ [n] \ I .



P = {(x1, x2, x3) ∈ [0, 2]2 × R : hx1 + hx2 + x3 ≤ 2h
x3 ≤ 2hx1

x3 ≤ 2hx2

x3 ≥ 0}

For i = 1, 2, Bi = {(xi , yi1, yi2) ∈ R× [0, 1]2 : xi = yi1 + yi2, yi1 ≥ yi2}
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For i = 1, 2, Bi = {(xi , yi1, yi2) ∈ R× [0, 1]2 : xi = yi1 + yi2, yi1 ≥ yi2}

Q = { (x1, x2, x3) ∈ [0, 2]2 × R, (y11, y12, y21, y22) ∈ [0, 1]4 :

hx1 + hx2 + x3 ≤ 2h
x3 ≤ 2hx1

x3 ≤ 2hx2

x3 ≥ 0
(xi , yi1, yi2) ∈ Bi i = 1, 2}
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V (Q) consists of the following points:
x1 x2 x3 y11 y12 y21 y22

0 0 0 0 0 0 0
2 0 0 1 1 0 0
0 2 0 0 0 1 1

1/2 1/2 h 1/2 0 1/2 0
1/2 1/2 h 1/2 0 1/4 1/4
1/2 1/2 h 1/4 1/4 1/2 0
1/2 1/2 h 1/4 1/4 1/4 1/4
1 0 0 1 0 0 0
0 1 0 0 0 1 0
1 1 0 1 0 1 0
1 1 0 1/2 1/2 1 0
1 1 0 1 0 1/2 1/2
1 1/3 2h/3 1 0 1/3 0
1 1/3 2h/3 1 0 1/6 1/6

1/3 1 2h/3 1/3 0 1 0
1/3 1 2h/3 1/6 1/6 1 0
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V (Q) consists of the following points:
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2 0 0 1 1 0 0
0 2 0 0 0 1 1

1/2 1/2 h 1/2 0 1/2 0
1/2 1/2 h 1/2 0 1/4 1/4
1/2 1/2 h 1/4 1/4 1/2 0
1/2 1/2 h 1/4 1/4 1/4 1/4
1 0 0 1 0 0 0
0 1 0 0 0 1 0
1 1 0 1 0 1 0
1 1 0 1/2 1/2 1 0
1 1 0 1 0 1/2 1/2
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Convexifying variables y11, y21 is enough to obtain the integer hull.



Rank of a binarization

The structure of the hitting set problem of a binary extended
formulation depends on both P and the binarizations and can be
complex. However, the situations simplifies if we restrict to a single xi

and B.

Let α ∈ Z. What is the minimum number of variables yij to convexify
in order to get rid of all vertices (x , y) ∈ Q with α < xi < α+ 1?

Thanks to our characterization of vertices of Q, it turns out that, if B
is natural, the answer only depends on B and α, and not on P!



Given any binary extended formulation where natural binarization B is
associated to variable xi , and α ∈ Z, the rank rkB(α) is the minimum
number of variables yij of B to convexify in order to get rid of all
vertices (x , y) ∈ Q with α < xi < α+ 1.

Intuitively, rkB(·) measures the progress made towards ensuring the
integrality of xi via application of sequential convexification.

For α1, ... ,αℓ ∈ Z, the rank rkB(α1, ... ,αℓ) is the minimum number of
variables yij of B to convexify in order to get rid of all vertices
(x , y) ∈ Q with αj < xi < αj + 1 for any j = 1, ... , ℓ.



Given any binary extended formulation where natural binarization B is
associated to variable xi , and α ∈ Z, the rank rkB(α) is the minimum
number of variables yij of B to convexify in order to get rid of all
vertices (x , y) ∈ Q with α < xi < α+ 1.

Intuitively, rkB(·) measures the progress made towards ensuring the
integrality of xi via application of sequential convexification.

For α1, ... ,αℓ ∈ Z, the rank rkB(α1, ... ,αℓ) is the minimum number of
variables yij of B to convexify in order to get rid of all vertices
(x , y) ∈ Q with αj < xi < αj + 1 for any j = 1, ... , ℓ.



rkB(α) = minimum number of variables yij of B to convexify in order
to get rid of all vertices (x , y) ∈ Q with α < xi < α+ 1.

B = {(xi , y) ∈ R× [0, 1]3 : xi =
∑d

j=1 yj , 1 ≥ y1 ≥ y2 ≥ y3 ≥ 0};
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Given a natural binarization B ⊆ [0, k]× [0, 1]d and α ∈ {0, ... , k − 1},
we say that edge ((xu, yu), (xv , y v )) of B is an α-edge if xu ≤ α and
xv ≥ α+ 1, or viceversa.

The indicator set of edge ((xu, yu), (xv , y v )) is the set of indices
i ∈ [d ] for which yu

i ̸= y v
i .

(1, 1, 0)

(1, 0, 0)

(1, 1, 1)

(0, 0, 0)

2

1
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0-edges sets

0 − 1 {1}
0 − 2 {1, 2}
0 − 3 {1, 2, 3}



Given a natural binarization B ⊆ [0, k]× [0, 1]d and α ∈ {0, ... , k − 1},
we say that edge ((xu, yu), (xv , y v )) of B is an α-edge if xu ≤ α and
xv ≥ α+ 1, or viceversa.

The indicator set of edge ((xu, yu), (xv , y v )) is the set of indices
i ∈ [d ] for which yu

i ̸= y v
i .

Lemma

rkB(α1, ... ,αℓ)= min |I | : I ⊆ [d ] hits the indicator sets of all αj -edges
of B, for j ∈ [ℓ].

Proof idea: the rank is also equal to the lift-and-project rank of a
certain polytope inside B.



Unary binarization

BU = {(x , y) ∈ R× [0, 1]k : x =
∑k

i=1 yi , 1 ≥ y1 ≥ · · · ≥ yk ≥ 0};
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rkBU (α1, ... ,αℓ) = ℓ.



Full binarization

BF = {(x , y) ∈ R× [0, 1]k : x =
∑k

i=1 i · yi ,
∑k

i=1 yi ≤ 1};
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rkBF (α1, ... ,αℓ) = k −min
j∈[ℓ]

αj .

k −minj∈[ℓ] αj ≥ k − (k − ℓ) = ℓ, hence:

Unary has smaller rank than Full:

rkBF (· · · ) ≥ rkBU (· · · ).



Logarithmic binarization

BL = {(x , y) ∈ R× [0, 1]d : x =
∑d

i=1 2i−1yi}.
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0 − 1 {1}
0 − 2 {2}
0 − 4 {3}

Observation: indicator sets of α-edges are singletons, and parallel
edges have the same indicator set.



Logarithmic binarization

BL = {(x , y) ∈ R× [0, 1]d : x =
∑d

i=1 2i−1yi}.
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0 − 4 {3}
1 − 5 {3}
2 − 6 {3}
3 − 7 {3}

rkBL(0) = 3, rkBL(1) = 2, rkBL(3) = 1.



Logarithmic binarization

BL = {(x , y) ∈ R× [0, 1]d : x =
∑d

i=1 2i−1yi}.
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0 − 4 {3}
1 − 5 {3}
2 − 6 {3}
3 − 7 {3}

Lemma
rkBL(α) = d − f (α).

where f (α) is the largest t such that 2t divides α+ 1.



Logarithmic binarization

BL = {(x , y) ∈ R× [0, 1]d : x =
∑d

i=1 2i−1yi}.
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0 − 4 {3}
1 − 5 {3}
2 − 6 {3}
3 − 7 {3}

Lemma

rkBL(α1, ... ,αℓ) = d − f (α1, ... ,αℓ).

where f (α1, ... ,αℓ) = max{t : 2t divides αj + 1 ∀j ∈ [ℓ]}.



Hypercube binarizations

The logarithmic binarization has ⌈ log 2(k)⌉ variables, but large rank.

Is there any binarization with the same number of variables, but with
lower rank?
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Hypercube binarizations

The logarithmic binarization has ⌈ log 2(k)⌉ variables, but large rank.

Is there any binarization with the same number of variables, but with
lower rank? No!

Definition

Binarization B ⊆ [0, k]× [0, 1]d is a hypercube binarization if
πy (B) = [0, 1]d ( =⇒ d = ⌈ log 2(k)⌉.)

Theorem

For any hypercube binarization B,

rkB(α1, ... ,αℓ) ≥ rkBL(α1, ... ,αℓ).

The logarithmic binarization is optimal among hypercube
binarizations.



Open questions

• What is the trade-off between the number of variables in a
binarization and its rank?

• Is the unary binarization optimal among the “simplex”
binarizations?

• Is there a binarization with O( log k) variables that is better than
the logarithmic?

Thank you for your attention.
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